与えられた定積分 $\int_{0}^{1} \log(x^2 + 1) \, dx$ を計算します。解析学定積分部分積分対数関数arctan積分計算2025/3/181. 問題の内容与えられた定積分 ∫01log(x2+1) dx\int_{0}^{1} \log(x^2 + 1) \, dx∫01log(x2+1)dx を計算します。2. 解き方の手順まず、部分積分を用いて積分を計算します。部分積分の公式は ∫u dv=uv−∫v du\int u \, dv = uv - \int v \, du∫udv=uv−∫vdu です。u=log(x2+1)u = \log(x^2 + 1)u=log(x2+1) と dv=dxdv = dxdv=dx とおくと、du=2xx2+1 dxdu = \frac{2x}{x^2 + 1} \, dxdu=x2+12xdx と v=xv = xv=x となります。したがって、∫log(x2+1) dx=xlog(x2+1)−∫x⋅2xx2+1 dx=xlog(x2+1)−∫2x2x2+1 dx\int \log(x^2 + 1) \, dx = x \log(x^2 + 1) - \int x \cdot \frac{2x}{x^2 + 1} \, dx = x \log(x^2 + 1) - \int \frac{2x^2}{x^2 + 1} \, dx∫log(x2+1)dx=xlog(x2+1)−∫x⋅x2+12xdx=xlog(x2+1)−∫x2+12x2dx次に、∫2x2x2+1 dx\int \frac{2x^2}{x^2 + 1} \, dx∫x2+12x2dx を計算します。2x2x2+1=2(x2+1)−2x2+1=2−2x2+1\frac{2x^2}{x^2 + 1} = \frac{2(x^2 + 1) - 2}{x^2 + 1} = 2 - \frac{2}{x^2 + 1}x2+12x2=x2+12(x2+1)−2=2−x2+12したがって、∫2x2x2+1 dx=∫(2−2x2+1) dx=2x−2arctan(x)+C\int \frac{2x^2}{x^2 + 1} \, dx = \int (2 - \frac{2}{x^2 + 1}) \, dx = 2x - 2 \arctan(x) + C∫x2+12x2dx=∫(2−x2+12)dx=2x−2arctan(x)+Cゆえに、∫log(x2+1) dx=xlog(x2+1)−2x+2arctan(x)+C\int \log(x^2 + 1) \, dx = x \log(x^2 + 1) - 2x + 2 \arctan(x) + C∫log(x2+1)dx=xlog(x2+1)−2x+2arctan(x)+C теперь вычислим определенный интеграл:∫01log(x2+1) dx=[xlog(x2+1)−2x+2arctan(x)]01\int_{0}^{1} \log(x^2 + 1) \, dx = [x \log(x^2 + 1) - 2x + 2 \arctan(x)]_{0}^{1}∫01log(x2+1)dx=[xlog(x2+1)−2x+2arctan(x)]01=(1⋅log(12+1)−2⋅1+2arctan(1))−(0⋅log(02+1)−2⋅0+2arctan(0))= (1 \cdot \log(1^2 + 1) - 2 \cdot 1 + 2 \arctan(1)) - (0 \cdot \log(0^2 + 1) - 2 \cdot 0 + 2 \arctan(0))=(1⋅log(12+1)−2⋅1+2arctan(1))−(0⋅log(02+1)−2⋅0+2arctan(0))=log(2)−2+2⋅π4−0=log(2)−2+π2= \log(2) - 2 + 2 \cdot \frac{\pi}{4} - 0 = \log(2) - 2 + \frac{\pi}{2}=log(2)−2+2⋅4π−0=log(2)−2+2π3. 最終的な答えlog(2)−2+π2\log(2) - 2 + \frac{\pi}{2}log(2)−2+2π