## 1. 問題の内容代数学二次方程式複素数解の公式2025/4/29##1. 問題の内容次の2次方程式を解け。(1) x2=−9x^2 = -9x2=−9(2) x2+3x+10=0x^2 + 3x + 10 = 0x2+3x+10=0(3) x2−4x+8=0x^2 - 4x + 8 = 0x2−4x+8=0(4) 2(x−1)2+2(x−1)+1=02(x-1)^2 + 2(x-1) + 1 = 02(x−1)2+2(x−1)+1=0(5) (2−1)x2+2x+1=0(\sqrt{2}-1)x^2 + \sqrt{2}x + 1 = 0(2−1)x2+2x+1=0(6) (x+1)(x+3)=x(9−2x)(x+1)(x+3) = x(9-2x)(x+1)(x+3)=x(9−2x)(7) 1.4x−1.2x2=0.61.4x - 1.2x^2 = 0.61.4x−1.2x2=0.6(8) x2+12=x−13\frac{x^2+1}{2} = \frac{x-1}{3}2x2+1=3x−1##2. 解き方の手順(1) x2=−9x^2 = -9x2=−9x=±−9x = \pm \sqrt{-9}x=±−9x=±9ix = \pm \sqrt{9}ix=±9ix=±3ix = \pm 3ix=±3i(2) x2+3x+10=0x^2 + 3x + 10 = 0x2+3x+10=0解の公式を用いる。x=−b±b2−4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2a−b±b2−4acx=−3±32−4(1)(10)2(1)x = \frac{-3 \pm \sqrt{3^2 - 4(1)(10)}}{2(1)}x=2(1)−3±32−4(1)(10)x=−3±9−402x = \frac{-3 \pm \sqrt{9 - 40}}{2}x=2−3±9−40x=−3±−312x = \frac{-3 \pm \sqrt{-31}}{2}x=2−3±−31x=−3±31i2x = \frac{-3 \pm \sqrt{31}i}{2}x=2−3±31i(3) x2−4x+8=0x^2 - 4x + 8 = 0x2−4x+8=0解の公式を用いる。x=−b±b2−4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2a−b±b2−4acx=4±(−4)2−4(1)(8)2(1)x = \frac{4 \pm \sqrt{(-4)^2 - 4(1)(8)}}{2(1)}x=2(1)4±(−4)2−4(1)(8)x=4±16−322x = \frac{4 \pm \sqrt{16 - 32}}{2}x=24±16−32x=4±−162x = \frac{4 \pm \sqrt{-16}}{2}x=24±−16x=4±4i2x = \frac{4 \pm 4i}{2}x=24±4ix=2±2ix = 2 \pm 2ix=2±2i(4) 2(x−1)2+2(x−1)+1=02(x-1)^2 + 2(x-1) + 1 = 02(x−1)2+2(x−1)+1=0t=x−1t = x-1t=x−1 とおく。2t2+2t+1=02t^2 + 2t + 1 = 02t2+2t+1=0解の公式を用いる。t=−b±b2−4ac2at = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}t=2a−b±b2−4act=−2±22−4(2)(1)2(2)t = \frac{-2 \pm \sqrt{2^2 - 4(2)(1)}}{2(2)}t=2(2)−2±22−4(2)(1)t=−2±4−84t = \frac{-2 \pm \sqrt{4 - 8}}{4}t=4−2±4−8t=−2±−44t = \frac{-2 \pm \sqrt{-4}}{4}t=4−2±−4t=−2±2i4t = \frac{-2 \pm 2i}{4}t=4−2±2it=−1±i2t = \frac{-1 \pm i}{2}t=2−1±ix−1=−1±i2x - 1 = \frac{-1 \pm i}{2}x−1=2−1±ix=1+−1±i2x = 1 + \frac{-1 \pm i}{2}x=1+2−1±ix=22+−1±i2x = \frac{2}{2} + \frac{-1 \pm i}{2}x=22+2−1±ix=1±i2x = \frac{1 \pm i}{2}x=21±i(5) (2−1)x2+2x+1=0(\sqrt{2}-1)x^2 + \sqrt{2}x + 1 = 0(2−1)x2+2x+1=0解の公式を用いる。x=−b±b2−4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2a−b±b2−4acx=−2±(2)2−4(2−1)(1)2(2−1)x = \frac{-\sqrt{2} \pm \sqrt{(\sqrt{2})^2 - 4(\sqrt{2}-1)(1)}}{2(\sqrt{2}-1)}x=2(2−1)−2±(2)2−4(2−1)(1)x=−2±2−42+42(2−1)x = \frac{-\sqrt{2} \pm \sqrt{2 - 4\sqrt{2} + 4}}{2(\sqrt{2}-1)}x=2(2−1)−2±2−42+4x=−2±6−422(2−1)x = \frac{-\sqrt{2} \pm \sqrt{6 - 4\sqrt{2}}}{2(\sqrt{2}-1)}x=2(2−1)−2±6−42x=−2±2(3−22)2(2−1)x = \frac{-\sqrt{2} \pm \sqrt{2(3 - 2\sqrt{2})}}{2(\sqrt{2}-1)}x=2(2−1)−2±2(3−22)x=−2±2(3−22)2(2−1)x = \frac{-\sqrt{2} \pm \sqrt{2}(\sqrt{3 - 2\sqrt{2}})}{2(\sqrt{2}-1)}x=2(2−1)−2±2(3−22)x=−2±2((2−1)2)2(2−1)x = \frac{-\sqrt{2} \pm \sqrt{2}(\sqrt{(\sqrt{2}-1)^2})}{2(\sqrt{2}-1)}x=2(2−1)−2±2((2−1)2)x=−2±2(2−1)2(2−1)x = \frac{-\sqrt{2} \pm \sqrt{2}(\sqrt{2}-1)}{2(\sqrt{2}-1)}x=2(2−1)−2±2(2−1)x=−2±(2−2)2(2−1)x = \frac{-\sqrt{2} \pm (2-\sqrt{2})}{2(\sqrt{2}-1)}x=2(2−1)−2±(2−2)x=−2+2−22(2−1)=2−222(2−1)=2(1−2)2(2−1)=−1x = \frac{-\sqrt{2} + 2 - \sqrt{2}}{2(\sqrt{2}-1)} = \frac{2-2\sqrt{2}}{2(\sqrt{2}-1)} = \frac{2(1-\sqrt{2})}{2(\sqrt{2}-1)} = -1x=2(2−1)−2+2−2=2(2−1)2−22=2(2−1)2(1−2)=−1x=−2−2+22(2−1)=−22(2−1)=−12−1=−1(2+1)(2−1)(2+1)=−2−12−1=−2−1x = \frac{-\sqrt{2} - 2 + \sqrt{2}}{2(\sqrt{2}-1)} = \frac{-2}{2(\sqrt{2}-1)} = \frac{-1}{\sqrt{2}-1} = \frac{-1(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{-\sqrt{2}-1}{2-1} = -\sqrt{2}-1x=2(2−1)−2−2+2=2(2−1)−2=2−1−1=(2−1)(2+1)−1(2+1)=2−1−2−1=−2−1(6) (x+1)(x+3)=x(9−2x)(x+1)(x+3) = x(9-2x)(x+1)(x+3)=x(9−2x)x2+4x+3=9x−2x2x^2 + 4x + 3 = 9x - 2x^2x2+4x+3=9x−2x23x2−5x+3=03x^2 - 5x + 3 = 03x2−5x+3=0解の公式を用いる。x=−b±b2−4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2a−b±b2−4acx=5±(−5)2−4(3)(3)2(3)x = \frac{5 \pm \sqrt{(-5)^2 - 4(3)(3)}}{2(3)}x=2(3)5±(−5)2−4(3)(3)x=5±25−366x = \frac{5 \pm \sqrt{25 - 36}}{6}x=65±25−36x=5±−116x = \frac{5 \pm \sqrt{-11}}{6}x=65±−11x=5±11i6x = \frac{5 \pm \sqrt{11}i}{6}x=65±11i(7) 1.4x−1.2x2=0.61.4x - 1.2x^2 = 0.61.4x−1.2x2=0.61.2x2−1.4x+0.6=01.2x^2 - 1.4x + 0.6 = 01.2x2−1.4x+0.6=012x2−14x+6=012x^2 - 14x + 6 = 012x2−14x+6=06x2−7x+3=06x^2 - 7x + 3 = 06x2−7x+3=0解の公式を用いる。x=−b±b2−4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2a−b±b2−4acx=7±(−7)2−4(6)(3)2(6)x = \frac{7 \pm \sqrt{(-7)^2 - 4(6)(3)}}{2(6)}x=2(6)7±(−7)2−4(6)(3)x=7±49−7212x = \frac{7 \pm \sqrt{49 - 72}}{12}x=127±49−72x=7±−2312x = \frac{7 \pm \sqrt{-23}}{12}x=127±−23x=7±23i12x = \frac{7 \pm \sqrt{23}i}{12}x=127±23i(8) x2+12=x−13\frac{x^2+1}{2} = \frac{x-1}{3}2x2+1=3x−13(x2+1)=2(x−1)3(x^2+1) = 2(x-1)3(x2+1)=2(x−1)3x2+3=2x−23x^2 + 3 = 2x - 23x2+3=2x−23x2−2x+5=03x^2 - 2x + 5 = 03x2−2x+5=0解の公式を用いる。x=−b±b2−4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2a−b±b2−4acx=2±(−2)2−4(3)(5)2(3)x = \frac{2 \pm \sqrt{(-2)^2 - 4(3)(5)}}{2(3)}x=2(3)2±(−2)2−4(3)(5)x=2±4−606x = \frac{2 \pm \sqrt{4 - 60}}{6}x=62±4−60x=2±−566x = \frac{2 \pm \sqrt{-56}}{6}x=62±−56x=2±56i6x = \frac{2 \pm \sqrt{56}i}{6}x=62±56ix=2±214i6x = \frac{2 \pm 2\sqrt{14}i}{6}x=62±214ix=1±14i3x = \frac{1 \pm \sqrt{14}i}{3}x=31±14i##3. 最終的な答え(1) x=±3ix = \pm 3ix=±3i(2) x=−3±31i2x = \frac{-3 \pm \sqrt{31}i}{2}x=2−3±31i(3) x=2±2ix = 2 \pm 2ix=2±2i(4) x=1±i2x = \frac{1 \pm i}{2}x=21±i(5) x=−1,−2−1x = -1, -\sqrt{2}-1x=−1,−2−1(6) x=5±11i6x = \frac{5 \pm \sqrt{11}i}{6}x=65±11i(7) x=7±23i12x = \frac{7 \pm \sqrt{23}i}{12}x=127±23i(8) x=1±14i3x = \frac{1 \pm \sqrt{14}i}{3}x=31±14i