問題は、$x, y$が $x^2 + y^2 = 1$ を満たすとき、$3x^2 + 2xy + y^2$ の最大値と最小値を求める問題です。代数学最大値最小値三角関数二次形式2025/5/11. 問題の内容問題は、x,yx, yx,yが x2+y2=1x^2 + y^2 = 1x2+y2=1 を満たすとき、3x2+2xy+y23x^2 + 2xy + y^23x2+2xy+y2 の最大値と最小値を求める問題です。2. 解き方の手順まず、x=cosθx = \cos\thetax=cosθ, y=sinθy = \sin\thetay=sinθ とおきます。これにより、x2+y2=cos2θ+sin2θ=1x^2 + y^2 = \cos^2\theta + \sin^2\theta = 1x2+y2=cos2θ+sin2θ=1 を満たすことが保証されます。次に、与えられた式に代入します。3x2+2xy+y2=3cos2θ+2cosθsinθ+sin2θ3x^2 + 2xy + y^2 = 3\cos^2\theta + 2\cos\theta\sin\theta + \sin^2\theta3x2+2xy+y2=3cos2θ+2cosθsinθ+sin2θ=2cos2θ+(cos2θ+sin2θ)+2cosθsinθ= 2\cos^2\theta + (\cos^2\theta + \sin^2\theta) + 2\cos\theta\sin\theta=2cos2θ+(cos2θ+sin2θ)+2cosθsinθ=2cos2θ+1+sin(2θ)= 2\cos^2\theta + 1 + \sin(2\theta)=2cos2θ+1+sin(2θ)=2⋅1+cos(2θ)2+1+sin(2θ)= 2 \cdot \frac{1 + \cos(2\theta)}{2} + 1 + \sin(2\theta)=2⋅21+cos(2θ)+1+sin(2θ)=1+cos(2θ)+1+sin(2θ)= 1 + \cos(2\theta) + 1 + \sin(2\theta)=1+cos(2θ)+1+sin(2θ)=2+cos(2θ)+sin(2θ)= 2 + \cos(2\theta) + \sin(2\theta)=2+cos(2θ)+sin(2θ)ここで、f(θ)=cos(2θ)+sin(2θ)f(\theta) = \cos(2\theta) + \sin(2\theta)f(θ)=cos(2θ)+sin(2θ) とおくと、f(θ)=2(12cos(2θ)+12sin(2θ))f(\theta) = \sqrt{2} \left( \frac{1}{\sqrt{2}}\cos(2\theta) + \frac{1}{\sqrt{2}}\sin(2\theta) \right)f(θ)=2(21cos(2θ)+21sin(2θ))f(θ)=2(sin(π4)cos(2θ)+cos(π4)sin(2θ))f(\theta) = \sqrt{2} \left( \sin(\frac{\pi}{4})\cos(2\theta) + \cos(\frac{\pi}{4})\sin(2\theta) \right)f(θ)=2(sin(4π)cos(2θ)+cos(4π)sin(2θ))f(θ)=2sin(2θ+π4)f(\theta) = \sqrt{2} \sin(2\theta + \frac{\pi}{4})f(θ)=2sin(2θ+4π)したがって、3x2+2xy+y2=2+2sin(2θ+π4)3x^2 + 2xy + y^2 = 2 + \sqrt{2} \sin(2\theta + \frac{\pi}{4})3x2+2xy+y2=2+2sin(2θ+4π) となります。sin(2θ+π4)\sin(2\theta + \frac{\pi}{4})sin(2θ+4π) の範囲は −1≤sin(2θ+π4)≤1-1 \le \sin(2\theta + \frac{\pi}{4}) \le 1−1≤sin(2θ+4π)≤1 なので、−2≤2sin(2θ+π4)≤2-\sqrt{2} \le \sqrt{2} \sin(2\theta + \frac{\pi}{4}) \le \sqrt{2}−2≤2sin(2θ+4π)≤22−2≤2+2sin(2θ+π4)≤2+22 - \sqrt{2} \le 2 + \sqrt{2} \sin(2\theta + \frac{\pi}{4}) \le 2 + \sqrt{2}2−2≤2+2sin(2θ+4π)≤2+23. 最終的な答え最大値: 2+22 + \sqrt{2}2+2最小値: 2−22 - \sqrt{2}2−2