与えられた6つの数式を計算し、あるいは分母を有理化する問題です。代数学根号計算有理化式の計算2025/5/21. 問題の内容与えられた6つの数式を計算し、あるいは分母を有理化する問題です。2. 解き方の手順(1) 227−312+542\sqrt{27} - 3\sqrt{12} + \sqrt{54}227−312+54まず、各項を簡単にします。227=233=2⋅33=632\sqrt{27} = 2\sqrt{3^3} = 2 \cdot 3\sqrt{3} = 6\sqrt{3}227=233=2⋅33=63312=322⋅3=3⋅23=633\sqrt{12} = 3\sqrt{2^2 \cdot 3} = 3 \cdot 2\sqrt{3} = 6\sqrt{3}312=322⋅3=3⋅23=6354=2⋅33=36\sqrt{54} = \sqrt{2 \cdot 3^3} = 3\sqrt{6}54=2⋅33=36よって、63−63+36=366\sqrt{3} - 6\sqrt{3} + 3\sqrt{6} = 3\sqrt{6}63−63+36=36(2) (3+6)2(\sqrt{3} + \sqrt{6})^2(3+6)2展開します。(3+6)2=(3)2+236+(6)2=3+218+6=9+22⋅32=9+2⋅32=9+62(\sqrt{3} + \sqrt{6})^2 = (\sqrt{3})^2 + 2\sqrt{3}\sqrt{6} + (\sqrt{6})^2 = 3 + 2\sqrt{18} + 6 = 9 + 2\sqrt{2 \cdot 3^2} = 9 + 2 \cdot 3\sqrt{2} = 9 + 6\sqrt{2}(3+6)2=(3)2+236+(6)2=3+218+6=9+22⋅32=9+2⋅32=9+62(3) 3−18\frac{\sqrt{3}-1}{\sqrt{8}}83−1分母を有理化します。3−18=3−122=(3−1)2222=6−24\frac{\sqrt{3}-1}{\sqrt{8}} = \frac{\sqrt{3}-1}{2\sqrt{2}} = \frac{(\sqrt{3}-1)\sqrt{2}}{2\sqrt{2}\sqrt{2}} = \frac{\sqrt{6} - \sqrt{2}}{4}83−1=223−1=222(3−1)2=46−2(4) 23+22+3\frac{2\sqrt{3} + \sqrt{2}}{\sqrt{2} + \sqrt{3}}2+323+2分母を有理化します。23+22+3=(23+2)(3−2)(3+2)(3−2)=2(3)2−26+6−(2)2(3)2−(2)2=6−6−23−2=4−61=4−6\frac{2\sqrt{3} + \sqrt{2}}{\sqrt{2} + \sqrt{3}} = \frac{(2\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} = \frac{2(\sqrt{3})^2 - 2\sqrt{6} + \sqrt{6} - (\sqrt{2})^2}{(\sqrt{3})^2 - (\sqrt{2})^2} = \frac{6 - \sqrt{6} - 2}{3 - 2} = \frac{4 - \sqrt{6}}{1} = 4 - \sqrt{6}2+323+2=(3+2)(3−2)(23+2)(3−2)=(3)2−(2)22(3)2−26+6−(2)2=3−26−6−2=14−6=4−6(5) 32−7\frac{3}{2-\sqrt{7}}2−73分母を有理化します。32−7=3(2+7)(2−7)(2+7)=6+374−7=6+37−3=−2−7\frac{3}{2-\sqrt{7}} = \frac{3(2+\sqrt{7})}{(2-\sqrt{7})(2+\sqrt{7})} = \frac{6 + 3\sqrt{7}}{4 - 7} = \frac{6 + 3\sqrt{7}}{-3} = -2 - \sqrt{7}2−73=(2−7)(2+7)3(2+7)=4−76+37=−36+37=−2−7(6) 3+36(1+3)\frac{3 + \sqrt{3}}{\sqrt{6}(1 + \sqrt{3})}6(1+3)3+3分母を有理化します。3+36(1+3)=(3+3)(1−3)6(1+3)(1−3)=3−33+3−36(1−3)=−23−26=36=323=12=22\frac{3 + \sqrt{3}}{\sqrt{6}(1 + \sqrt{3})} = \frac{(3 + \sqrt{3})(1 - \sqrt{3})}{\sqrt{6}(1 + \sqrt{3})(1 - \sqrt{3})} = \frac{3 - 3\sqrt{3} + \sqrt{3} - 3}{\sqrt{6}(1 - 3)} = \frac{-2\sqrt{3}}{-2\sqrt{6}} = \frac{\sqrt{3}}{\sqrt{6}} = \frac{\sqrt{3}}{\sqrt{2}\sqrt{3}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}6(1+3)3+3=6(1+3)(1−3)(3+3)(1−3)=6(1−3)3−33+3−3=−26−23=63=233=21=223. 最終的な答え(1) 363\sqrt{6}36(2) 9+629 + 6\sqrt{2}9+62(3) 6−24\frac{\sqrt{6} - \sqrt{2}}{4}46−2(4) 4−64 - \sqrt{6}4−6(5) −2−7-2 - \sqrt{7}−2−7(6) 22\frac{\sqrt{2}}{2}22