与えられた式 $(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y)$ を展開し、簡単にせよ。代数学式の展開因数分解多項式2025/5/31. 問題の内容与えられた式 (x2+xy+y2)(x2+y2)(x−y)2(x+y)(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y)(x2+xy+y2)(x2+y2)(x−y)2(x+y) を展開し、簡単にせよ。2. 解き方の手順まず、(x−y)2(x+y)(x-y)^2(x+y)(x−y)2(x+y) の部分を展開します。(x−y)2=(x−y)(x−y)=x2−2xy+y2(x-y)^2 = (x-y)(x-y) = x^2 - 2xy + y^2(x−y)2=(x−y)(x−y)=x2−2xy+y2(x2−2xy+y2)(x+y)=x3+x2y−2x2y−2xy2+xy2+y3=x3−x2y−xy2+y3(x^2 - 2xy + y^2)(x+y) = x^3 + x^2y - 2x^2y - 2xy^2 + xy^2 + y^3 = x^3 - x^2y - xy^2 + y^3(x2−2xy+y2)(x+y)=x3+x2y−2x2y−2xy2+xy2+y3=x3−x2y−xy2+y3次に、x2+xy+y2x^2+xy+y^2x2+xy+y2 と x3−x2y−xy2+y3x^3 - x^2y - xy^2 + y^3x3−x2y−xy2+y3 の積を考えます。これは、x2+xy+y2x^2+xy+y^2x2+xy+y2 に (x−y)(x2−y2)(x-y)(x^2-y^2)(x−y)(x2−y2)を掛けたものと考えることができます。(x2+xy+y2)(x−y)=x3−y3(x^2+xy+y^2)(x-y) = x^3-y^3(x2+xy+y2)(x−y)=x3−y3となるので、(x2+xy+y2)(x−y)(x+y)=(x3−y3)(x+y)=x4+x3y−xy3−y4(x^2+xy+y^2)(x-y)(x+y) = (x^3 - y^3)(x+y) = x^4+x^3y-xy^3-y^4(x2+xy+y2)(x−y)(x+y)=(x3−y3)(x+y)=x4+x3y−xy3−y4なので、与えられた式は (x4−y4)(x2+y2)(x^4-y^4)(x^2+y^2)(x4−y4)(x2+y2)となる。(x4−y4)(x2+y2)=x6+x4y2−x2y4−y6(x^4-y^4)(x^2+y^2) = x^6 + x^4y^2 - x^2y^4 - y^6(x4−y4)(x2+y2)=x6+x4y2−x2y4−y6次に、x4−y4x^4-y^4x4−y4を展開します。x4−y4=(x2+y2)(x2−y2)x^4-y^4=(x^2+y^2)(x^2-y^2)x4−y4=(x2+y2)(x2−y2)与えられた式は (x2+xy+y2)(x2+y2)(x−y)2(x+y)(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y)(x2+xy+y2)(x2+y2)(x−y)2(x+y)です。(x−y)2(x+y)=(x−y)(x−y)(x+y)=(x−y)(x2−y2)=x3−x2y−xy2+y3(x-y)^2(x+y)=(x-y)(x-y)(x+y) = (x-y)(x^2-y^2)=x^3-x^2y-xy^2+y^3(x−y)2(x+y)=(x−y)(x−y)(x+y)=(x−y)(x2−y2)=x3−x2y−xy2+y3(x2+xy+y2)(x3−x2y−xy2+y3)=x5−x4y−x3y2+x2y3+x4y−x3y2−x2y3+xy4+x3y2−x2y3−xy4+y5=x5−x3y2−x2y3+y5(x^2+xy+y^2)(x^3-x^2y-xy^2+y^3)=x^5 -x^4y-x^3y^2+x^2y^3+x^4y-x^3y^2-x^2y^3+xy^4+x^3y^2-x^2y^3-xy^4+y^5 = x^5-x^3y^2-x^2y^3+y^5(x2+xy+y2)(x3−x2y−xy2+y3)=x5−x4y−x3y2+x2y3+x4y−x3y2−x2y3+xy4+x3y2−x2y3−xy4+y5=x5−x3y2−x2y3+y5(x5−x3y2−x2y3+y5)(x2+y2)=x7−x5y2−x4y3+x2y5+x5y2−x3y4−x2y5+y7=x7−x4y3−x3y4+y7(x^5 -x^3y^2-x^2y^3+y^5)(x^2+y^2) = x^7-x^5y^2-x^4y^3+x^2y^5+x^5y^2-x^3y^4-x^2y^5+y^7 = x^7-x^4y^3-x^3y^4+y^7(x5−x3y2−x2y3+y5)(x2+y2)=x7−x5y2−x4y3+x2y5+x5y2−x3y4−x2y5+y7=x7−x4y3−x3y4+y7間違いです。x4−y4=(x−y)(x+y)(x2+y2)x^4-y^4 = (x-y)(x+y)(x^2+y^2)x4−y4=(x−y)(x+y)(x2+y2)(x2+xy+y2)(x2+y2)(x−y)2(x+y)=(x2+xy+y2)(x−y)(x−y)(x+y)(x2+y2)=(x3−y3)(x−y)(x2+y2)=(x4−xy3−x3y+y4)(x2+y2)=x6−x3y3−x5y+x4y2+x4y2−xy5−x3y3+y6=x6−x5y+2x4y2−2x3y3−xy5+y6(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y) = (x^2+xy+y^2)(x-y)(x-y)(x+y)(x^2+y^2)=(x^3-y^3)(x-y)(x^2+y^2) = (x^4-xy^3-x^3y+y^4)(x^2+y^2)=x^6-x^3y^3-x^5y+x^4y^2+x^4y^2-xy^5-x^3y^3+y^6 = x^6 - x^5y + 2x^4y^2 - 2x^3y^3-xy^5+y^6(x2+xy+y2)(x2+y2)(x−y)2(x+y)=(x2+xy+y2)(x−y)(x−y)(x+y)(x2+y2)=(x3−y3)(x−y)(x2+y2)=(x4−xy3−x3y+y4)(x2+y2)=x6−x3y3−x5y+x4y2+x4y2−xy5−x3y3+y6=x6−x5y+2x4y2−2x3y3−xy5+y6もう一度考えます。(x2+xy+y2)(x2+y2)(x−y)(x−y)(x+y)(x^2+xy+y^2)(x^2+y^2)(x-y)(x-y)(x+y)(x2+xy+y2)(x2+y2)(x−y)(x−y)(x+y)(x2+xy+y2)(x−y)=x3−y3(x^2+xy+y^2)(x-y) = x^3-y^3(x2+xy+y2)(x−y)=x3−y3(x−y)(x+y)=x2−y2(x-y)(x+y)=x^2-y^2(x−y)(x+y)=x2−y2与式は(x3−y3)(x2−y2)(x2+y2)=(x3−y3)(x4−y4)=x7−x3y4−x4y3+y7(x^3-y^3)(x^2-y^2)(x^2+y^2) = (x^3-y^3)(x^4-y^4) = x^7-x^3y^4-x^4y^3+y^7(x3−y3)(x2−y2)(x2+y2)=(x3−y3)(x4−y4)=x7−x3y4−x4y3+y73. 最終的な答えx7−x4y3−x3y4+y7x^7-x^4y^3-x^3y^4+y^7x7−x4y3−x3y4+y7