与えられた式 $(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y)$ を展開し、簡単にせよ。

代数学式の展開因数分解多項式
2025/5/3

1. 問題の内容

与えられた式 (x2+xy+y2)(x2+y2)(xy)2(x+y)(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y) を展開し、簡単にせよ。

2. 解き方の手順

まず、(xy)2(x+y)(x-y)^2(x+y) の部分を展開します。
(xy)2=(xy)(xy)=x22xy+y2(x-y)^2 = (x-y)(x-y) = x^2 - 2xy + y^2
(x22xy+y2)(x+y)=x3+x2y2x2y2xy2+xy2+y3=x3x2yxy2+y3(x^2 - 2xy + y^2)(x+y) = x^3 + x^2y - 2x^2y - 2xy^2 + xy^2 + y^3 = x^3 - x^2y - xy^2 + y^3
次に、x2+xy+y2x^2+xy+y^2x3x2yxy2+y3x^3 - x^2y - xy^2 + y^3 の積を考えます。これは、x2+xy+y2x^2+xy+y^2(xy)(x2y2)(x-y)(x^2-y^2)を掛けたものと考えることができます。
(x2+xy+y2)(xy)=x3y3(x^2+xy+y^2)(x-y) = x^3-y^3となるので、
(x2+xy+y2)(xy)(x+y)=(x3y3)(x+y)=x4+x3yxy3y4(x^2+xy+y^2)(x-y)(x+y) = (x^3 - y^3)(x+y) = x^4+x^3y-xy^3-y^4
なので、与えられた式は (x4y4)(x2+y2)(x^4-y^4)(x^2+y^2)となる。
(x4y4)(x2+y2)=x6+x4y2x2y4y6(x^4-y^4)(x^2+y^2) = x^6 + x^4y^2 - x^2y^4 - y^6
次に、x4y4x^4-y^4を展開します。
x4y4=(x2+y2)(x2y2)x^4-y^4=(x^2+y^2)(x^2-y^2)
与えられた式は (x2+xy+y2)(x2+y2)(xy)2(x+y)(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y)です。
(xy)2(x+y)=(xy)(xy)(x+y)=(xy)(x2y2)=x3x2yxy2+y3(x-y)^2(x+y)=(x-y)(x-y)(x+y) = (x-y)(x^2-y^2)=x^3-x^2y-xy^2+y^3
(x2+xy+y2)(x3x2yxy2+y3)=x5x4yx3y2+x2y3+x4yx3y2x2y3+xy4+x3y2x2y3xy4+y5=x5x3y2x2y3+y5(x^2+xy+y^2)(x^3-x^2y-xy^2+y^3)=x^5 -x^4y-x^3y^2+x^2y^3+x^4y-x^3y^2-x^2y^3+xy^4+x^3y^2-x^2y^3-xy^4+y^5 = x^5-x^3y^2-x^2y^3+y^5
(x5x3y2x2y3+y5)(x2+y2)=x7x5y2x4y3+x2y5+x5y2x3y4x2y5+y7=x7x4y3x3y4+y7(x^5 -x^3y^2-x^2y^3+y^5)(x^2+y^2) = x^7-x^5y^2-x^4y^3+x^2y^5+x^5y^2-x^3y^4-x^2y^5+y^7 = x^7-x^4y^3-x^3y^4+y^7
間違いです。
x4y4=(xy)(x+y)(x2+y2)x^4-y^4 = (x-y)(x+y)(x^2+y^2)
(x2+xy+y2)(x2+y2)(xy)2(x+y)=(x2+xy+y2)(xy)(xy)(x+y)(x2+y2)=(x3y3)(xy)(x2+y2)=(x4xy3x3y+y4)(x2+y2)=x6x3y3x5y+x4y2+x4y2xy5x3y3+y6=x6x5y+2x4y22x3y3xy5+y6(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y) = (x^2+xy+y^2)(x-y)(x-y)(x+y)(x^2+y^2)=(x^3-y^3)(x-y)(x^2+y^2) = (x^4-xy^3-x^3y+y^4)(x^2+y^2)=x^6-x^3y^3-x^5y+x^4y^2+x^4y^2-xy^5-x^3y^3+y^6 = x^6 - x^5y + 2x^4y^2 - 2x^3y^3-xy^5+y^6
もう一度考えます。
(x2+xy+y2)(x2+y2)(xy)(xy)(x+y)(x^2+xy+y^2)(x^2+y^2)(x-y)(x-y)(x+y)
(x2+xy+y2)(xy)=x3y3(x^2+xy+y^2)(x-y) = x^3-y^3
(xy)(x+y)=x2y2(x-y)(x+y)=x^2-y^2
与式は(x3y3)(x2y2)(x2+y2)=(x3y3)(x4y4)=x7x3y4x4y3+y7(x^3-y^3)(x^2-y^2)(x^2+y^2) = (x^3-y^3)(x^4-y^4) = x^7-x^3y^4-x^4y^3+y^7

3. 最終的な答え

x7x4y3x3y4+y7x^7-x^4y^3-x^3y^4+y^7

「代数学」の関連問題