分数の分母を有理化する問題です。与えられた分数は $\frac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$ です。算数分数の有理化平方根の計算式の展開2025/5/31. 問題の内容分数の分母を有理化する問題です。与えられた分数は 2−3+52+3+5\frac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}2+3+52−3+5 です。2. 解き方の手順まず、分母と分子に 2+(3+5)\sqrt{2}+(\sqrt{3}+\sqrt{5})2+(3+5) の共役な複素数である 2−(3+5)\sqrt{2}-(\sqrt{3}+\sqrt{5})2−(3+5) を掛けます。2−3+52+3+5=2−(3−5)2+(3+5)\frac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}} = \frac{\sqrt{2}-(\sqrt{3}-\sqrt{5})}{\sqrt{2}+(\sqrt{3}+\sqrt{5})}2+3+52−3+5=2+(3+5)2−(3−5)=(2−(3−5))(2−(3+5))(2+(3+5))(2−(3+5))= \frac{(\sqrt{2}-(\sqrt{3}-\sqrt{5}))(\sqrt{2}-(\sqrt{3}+\sqrt{5}))}{(\sqrt{2}+(\sqrt{3}+\sqrt{5}))(\sqrt{2}-(\sqrt{3}+\sqrt{5}))}=(2+(3+5))(2−(3+5))(2−(3−5))(2−(3+5))=(2−3+5)(2−3−5)(2+3+5)(2−3−5)= \frac{(\sqrt{2}-\sqrt{3}+\sqrt{5})(\sqrt{2}-\sqrt{3}-\sqrt{5})}{(\sqrt{2}+\sqrt{3}+\sqrt{5})(\sqrt{2}-\sqrt{3}-\sqrt{5})}=(2+3+5)(2−3−5)(2−3+5)(2−3−5)分母を計算します。(2+(3+5))(2−(3+5))=(2)2−(3+5)2=2−(3+215+5)=2−8−215=−6−215(\sqrt{2}+(\sqrt{3}+\sqrt{5}))(\sqrt{2}-(\sqrt{3}+\sqrt{5})) = (\sqrt{2})^2 - (\sqrt{3}+\sqrt{5})^2 = 2 - (3 + 2\sqrt{15} + 5) = 2 - 8 - 2\sqrt{15} = -6 - 2\sqrt{15}(2+(3+5))(2−(3+5))=(2)2−(3+5)2=2−(3+215+5)=2−8−215=−6−215.分子を計算します。 (2−3+5)(2−3−5)=((2−3)+5)((2−3)−5)=(2−3)2−(5)2=(2−26+3)−5=5−26−5=−26(\sqrt{2}-\sqrt{3}+\sqrt{5})(\sqrt{2}-\sqrt{3}-\sqrt{5}) = ((\sqrt{2}-\sqrt{3})+\sqrt{5})((\sqrt{2}-\sqrt{3})-\sqrt{5}) = (\sqrt{2}-\sqrt{3})^2 - (\sqrt{5})^2 = (2 - 2\sqrt{6} + 3) - 5 = 5 - 2\sqrt{6} - 5 = -2\sqrt{6}(2−3+5)(2−3−5)=((2−3)+5)((2−3)−5)=(2−3)2−(5)2=(2−26+3)−5=5−26−5=−26.したがって、−26−6−215=63+15\frac{-2\sqrt{6}}{-6-2\sqrt{15}} = \frac{\sqrt{6}}{3+\sqrt{15}}−6−215−26=3+156分母と分子に 3−153-\sqrt{15}3−15 を掛けます。6(3−15)(3+15)(3−15)=36−909−15=36−310−6=3(6−10)−6=10−62\frac{\sqrt{6}(3-\sqrt{15})}{(3+\sqrt{15})(3-\sqrt{15})} = \frac{3\sqrt{6}-\sqrt{90}}{9-15} = \frac{3\sqrt{6}-3\sqrt{10}}{-6} = \frac{3(\sqrt{6}-\sqrt{10})}{-6} = \frac{\sqrt{10}-\sqrt{6}}{2}(3+15)(3−15)6(3−15)=9−1536−90=−636−310=−63(6−10)=210−63. 最終的な答え10−62\frac{\sqrt{10}-\sqrt{6}}{2}210−6