次の式を展開せよ。 (1) $(a+b)^2(a-b)^2$ (2) $(x^2+1)(x+1)(x-1)$ (3) $(x^2+2x+3)(x^2-2x+3)$ (4) $(x-y+z)(x+y-z)$代数学展開多項式因数分解数式処理2025/5/41. 問題の内容次の式を展開せよ。(1) (a+b)2(a−b)2(a+b)^2(a-b)^2(a+b)2(a−b)2(2) (x2+1)(x+1)(x−1)(x^2+1)(x+1)(x-1)(x2+1)(x+1)(x−1)(3) (x2+2x+3)(x2−2x+3)(x^2+2x+3)(x^2-2x+3)(x2+2x+3)(x2−2x+3)(4) (x−y+z)(x+y−z)(x-y+z)(x+y-z)(x−y+z)(x+y−z)2. 解き方の手順(1) (a+b)2(a−b)2=((a+b)(a−b))2=(a2−b2)2=a4−2a2b2+b4(a+b)^2(a-b)^2 = ((a+b)(a-b))^2 = (a^2-b^2)^2 = a^4 - 2a^2b^2 + b^4(a+b)2(a−b)2=((a+b)(a−b))2=(a2−b2)2=a4−2a2b2+b4(2) (x2+1)(x+1)(x−1)=(x2+1)(x2−1)=x4−1(x^2+1)(x+1)(x-1) = (x^2+1)(x^2-1) = x^4 - 1(x2+1)(x+1)(x−1)=(x2+1)(x2−1)=x4−1(3) (x2+2x+3)(x2−2x+3)=((x2+3)+2x)((x2+3)−2x)=(x2+3)2−(2x)2=x4+6x2+9−4x2=x4+2x2+9(x^2+2x+3)(x^2-2x+3) = ((x^2+3)+2x)((x^2+3)-2x) = (x^2+3)^2 - (2x)^2 = x^4 + 6x^2 + 9 - 4x^2 = x^4 + 2x^2 + 9(x2+2x+3)(x2−2x+3)=((x2+3)+2x)((x2+3)−2x)=(x2+3)2−(2x)2=x4+6x2+9−4x2=x4+2x2+9(4) (x−y+z)(x+y−z)=(x−(y−z))(x+(y−z))=x2−(y−z)2=x2−(y2−2yz+z2)=x2−y2+2yz−z2(x-y+z)(x+y-z) = (x-(y-z))(x+(y-z)) = x^2 - (y-z)^2 = x^2 - (y^2 - 2yz + z^2) = x^2 - y^2 + 2yz - z^2(x−y+z)(x+y−z)=(x−(y−z))(x+(y−z))=x2−(y−z)2=x2−(y2−2yz+z2)=x2−y2+2yz−z23. 最終的な答え(1) a4−2a2b2+b4a^4 - 2a^2b^2 + b^4a4−2a2b2+b4(2) x4−1x^4 - 1x4−1(3) x4+2x2+9x^4 + 2x^2 + 9x4+2x2+9(4) x2−y2+2yz−z2x^2 - y^2 + 2yz - z^2x2−y2+2yz−z2