$x = \sqrt{2} - 1$ のとき、$x^2 + \frac{1}{x^2}$ の値を求めます。代数学式の計算有理化平方根2025/5/51. 問題の内容x=2−1x = \sqrt{2} - 1x=2−1 のとき、x2+1x2x^2 + \frac{1}{x^2}x2+x21 の値を求めます。2. 解き方の手順まず、x=2−1x = \sqrt{2} - 1x=2−1 から 1x\frac{1}{x}x1 を求めます。1x=12−1\frac{1}{x} = \frac{1}{\sqrt{2} - 1}x1=2−11次に、分母を有理化します。1x=12−1⋅2+12+1=2+1(2)2−12=2+12−1=2+1\frac{1}{x} = \frac{1}{\sqrt{2} - 1} \cdot \frac{\sqrt{2} + 1}{\sqrt{2} + 1} = \frac{\sqrt{2} + 1}{(\sqrt{2})^2 - 1^2} = \frac{\sqrt{2} + 1}{2 - 1} = \sqrt{2} + 1x1=2−11⋅2+12+1=(2)2−122+1=2−12+1=2+1次に、x2x^2x2 と 1x2\frac{1}{x^2}x21 を求めます。x2=(2−1)2=(2)2−22+1=2−22+1=3−22x^2 = (\sqrt{2} - 1)^2 = (\sqrt{2})^2 - 2\sqrt{2} + 1 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2}x2=(2−1)2=(2)2−22+1=2−22+1=3−221x2=(2+1)2=(2)2+22+1=2+22+1=3+22\frac{1}{x^2} = (\sqrt{2} + 1)^2 = (\sqrt{2})^2 + 2\sqrt{2} + 1 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2}x21=(2+1)2=(2)2+22+1=2+22+1=3+22最後に、x2+1x2x^2 + \frac{1}{x^2}x2+x21 を計算します。x2+1x2=(3−22)+(3+22)=3−22+3+22=6x^2 + \frac{1}{x^2} = (3 - 2\sqrt{2}) + (3 + 2\sqrt{2}) = 3 - 2\sqrt{2} + 3 + 2\sqrt{2} = 6x2+x21=(3−22)+(3+22)=3−22+3+22=63. 最終的な答え6