与えられた式 $ab(a-b) + bc(b-c) + ca(c-a)$ を因数分解する。

代数学因数分解多項式展開式の整理
2025/3/19

1. 問題の内容

与えられた式 ab(ab)+bc(bc)+ca(ca)ab(a-b) + bc(b-c) + ca(c-a) を因数分解する。

2. 解き方の手順

与えられた式を展開し、整理する。その後、因数分解を行う。
まず、式を展開する。
ab(ab)+bc(bc)+ca(ca)=a2bab2+b2cbc2+c2aca2ab(a-b) + bc(b-c) + ca(c-a) = a^2b - ab^2 + b^2c - bc^2 + c^2a - ca^2
次に、aについて降べきの順に整理する。
a2bab2+b2cbc2+c2aca2=(bc)a2(b2c2)a+(b2cbc2)a^2b - ab^2 + b^2c - bc^2 + c^2a - ca^2 = (b-c)a^2 - (b^2-c^2)a + (b^2c - bc^2)
=(bc)a2(b+c)(bc)a+bc(bc) = (b-c)a^2 - (b+c)(b-c)a + bc(b-c)
共通因数 (bc)(b-c) でくくる。
=(bc)[a2(b+c)a+bc]= (b-c)[a^2 - (b+c)a + bc]
括弧の中を因数分解する。
=(bc)(ab)(ac)=(b-c)(a-b)(a-c)
符号を整理するために (ac)(a-c)(ca)-(c-a) に変える。
=(bc)(ab)(1)(ca)=(b-c)(a-b)(-1)(c-a)
=(ab)(bc)(ca)=-(a-b)(b-c)(c-a)

3. 最終的な答え

(ab)(bc)(ca)-(a-b)(b-c)(c-a)

「代数学」の関連問題

二次関数 $y = -2x^2 - 12x - 15$ の $-5 \le x \le -2$ における最大値と最小値を求める問題です。平方完成を行い、グラフの頂点と定義域の端点における $y$ の値...

二次関数最大値最小値平方完成放物線
2025/6/23

複素数の直交表示を極表示に変換し、極表示を用いた計算を行う問題です。具体的には、以下の3つの問題を解く必要があります。 (1) $-2\sqrt{3} + j2$ を極表示に変換する。 (2) $\f...

複素数極表示複素数の計算
2025/6/23

不等式 $a^2 + 3ab + 3b^2 \geq 0$ が成り立つことを証明し、等号が成り立つ条件を求める。

不等式平方完成実数
2025/6/23

次の不等式を解きます。 (1) $4x + 2 > 3 + 5x$ (2) $\frac{2x + 3}{5} \leq \frac{x - 2}{3}$ (4) $|x + 4| \leq 5$ (...

不等式絶対値一次不等式
2025/6/23

$7x - 1 \ge 4x - 10$ $3x \ge -9$ $x \ge -3$

連立不等式不等式一次不等式
2025/6/23

与えられた二次方程式 $\frac{1}{2}x^2 + \frac{1}{3}x + \frac{1}{4} = 0$ を解く。

二次方程式解の公式複素数
2025/6/23

2次関数 $y = \frac{1}{3}(x+3)^2 + 1$ の $-6 \le x \le 3$ の範囲における最大値と最小値を求めよ。

二次関数最大値最小値放物線定義域
2025/6/23

240円の花と200円の花を合わせて12本買った。代金の合計を2700円以下にしたいとき、240円の花は最大で何本買えるか。

不等式文章問題一次不等式最大値
2025/6/23

2次関数の定義域が与えられたとき、グラフを書き、最大値と最小値を求めます。今回は、(2) $y = -2x^2 - 12x - 15$ ($-5 \leq x \leq -2$) の問題を解きます。

二次関数最大値最小値平方完成定義域グラフ
2025/6/23

与えられた等式 $3(a^2 + b^2 + c^2) - (a+b+c)^2 = (a-b)^2 + (b-c)^2 + (c-a)^2$ が成り立つことを証明する問題です。

等式の証明式の展開二次式
2025/6/23