$x = \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$, $y = \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ のとき、$x+y$, $xy$, $x^2+y^2$, $x^3+y^3$, $x^4+y^4$, $x^5+y^5$ の値を求める。代数学式の計算有理化根号対称式2025/5/51. 問題の内容x=3−23+2x = \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}x=3+23−2, y=3+23−2y = \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}y=3−23+2 のとき、x+yx+yx+y, xyxyxy, x2+y2x^2+y^2x2+y2, x3+y3x^3+y^3x3+y3, x4+y4x^4+y^4x4+y4, x5+y5x^5+y^5x5+y5 の値を求める。2. 解き方の手順まず、xxx と yyy をそれぞれ有理化する。x=3−23+2=(3−2)2(3+2)(3−2)=3−26+23−2=5−26x = \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} = \frac{(\sqrt{3}-\sqrt{2})^2}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})} = \frac{3 - 2\sqrt{6} + 2}{3 - 2} = 5 - 2\sqrt{6}x=3+23−2=(3+2)(3−2)(3−2)2=3−23−26+2=5−26y=3+23−2=(3+2)2(3−2)(3+2)=3+26+23−2=5+26y = \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} = \frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})} = \frac{3 + 2\sqrt{6} + 2}{3 - 2} = 5 + 2\sqrt{6}y=3−23+2=(3−2)(3+2)(3+2)2=3−23+26+2=5+26したがって、x+y=(5−26)+(5+26)=10x+y = (5 - 2\sqrt{6}) + (5 + 2\sqrt{6}) = 10x+y=(5−26)+(5+26)=10xy=(5−26)(5+26)=52−(26)2=25−4⋅6=25−24=1xy = (5 - 2\sqrt{6})(5 + 2\sqrt{6}) = 5^2 - (2\sqrt{6})^2 = 25 - 4 \cdot 6 = 25 - 24 = 1xy=(5−26)(5+26)=52−(26)2=25−4⋅6=25−24=1x2+y2=(x+y)2−2xy=102−2(1)=100−2=98x^2 + y^2 = (x+y)^2 - 2xy = 10^2 - 2(1) = 100 - 2 = 98x2+y2=(x+y)2−2xy=102−2(1)=100−2=98x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)=10(102−3(1))=10(100−3)=10⋅97=970x^3 + y^3 = (x+y)(x^2 - xy + y^2) = (x+y)((x+y)^2 - 3xy) = 10(10^2 - 3(1)) = 10(100 - 3) = 10 \cdot 97 = 970x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)=10(102−3(1))=10(100−3)=10⋅97=970x4+y4=(x2+y2)2−2(xy)2=(98)2−2(1)2=9604−2=9602x^4 + y^4 = (x^2 + y^2)^2 - 2(xy)^2 = (98)^2 - 2(1)^2 = 9604 - 2 = 9602x4+y4=(x2+y2)2−2(xy)2=(98)2−2(1)2=9604−2=9602x5+y5=(x2+y2)(x3+y3)−x2y2(x+y)=(98)(970)−(1)2(10)=95060−10=95050x^5 + y^5 = (x^2+y^2)(x^3+y^3) - x^2y^2(x+y) = (98)(970) - (1)^2(10) = 95060 - 10 = 95050x5+y5=(x2+y2)(x3+y3)−x2y2(x+y)=(98)(970)−(1)2(10)=95060−10=950503. 最終的な答えx+y=10x+y = 10x+y=10xy=1xy = 1xy=1x2+y2=98x^2 + y^2 = 98x2+y2=98x3+y3=970x^3 + y^3 = 970x3+y3=970x4+y4=9602x^4 + y^4 = 9602x4+y4=9602x5+y5=95050x^5 + y^5 = 95050x5+y5=95050