二項定理を用いて $(x+2)^5$ を展開し、与えられた式の空欄を埋める問題です。代数学二項定理展開2025/5/61. 問題の内容二項定理を用いて (x+2)5(x+2)^5(x+2)5 を展開し、与えられた式の空欄を埋める問題です。2. 解き方の手順二項定理は、(a+b)n=∑k=0n(nk)an−kbk(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k(a+b)n=∑k=0n(kn)an−kbk で表されます。今回の問題では、 a=xa=xa=x, b=2b=2b=2, n=5n=5n=5 です。(x+2)5=(50)x520+(51)x421+(52)x322+(53)x223+(54)x124+(55)x025(x+2)^5 = \binom{5}{0}x^5 2^0 + \binom{5}{1}x^4 2^1 + \binom{5}{2}x^3 2^2 + \binom{5}{3}x^2 2^3 + \binom{5}{4}x^1 2^4 + \binom{5}{5}x^0 2^5(x+2)5=(05)x520+(15)x421+(25)x322+(35)x223+(45)x124+(55)x025各項を計算します。* (50)=1\binom{5}{0} = 1(05)=1, 20=12^0 = 120=1, (50)x520=x5\binom{5}{0}x^5 2^0 = x^5(05)x520=x5* (51)=5\binom{5}{1} = 5(15)=5, 21=22^1 = 221=2, (51)x421=5⋅2x4=10x4\binom{5}{1}x^4 2^1 = 5 \cdot 2 x^4 = 10x^4(15)x421=5⋅2x4=10x4* (52)=5⋅42⋅1=10\binom{5}{2} = \frac{5 \cdot 4}{2 \cdot 1} = 10(25)=2⋅15⋅4=10, 22=42^2 = 422=4, (52)x322=10⋅4x3=40x3\binom{5}{2}x^3 2^2 = 10 \cdot 4 x^3 = 40x^3(25)x322=10⋅4x3=40x3* (53)=5⋅4⋅33⋅2⋅1=10\binom{5}{3} = \frac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1} = 10(35)=3⋅2⋅15⋅4⋅3=10, 23=82^3 = 823=8, (53)x223=10⋅8x2=80x2\binom{5}{3}x^2 2^3 = 10 \cdot 8 x^2 = 80x^2(35)x223=10⋅8x2=80x2* (54)=5\binom{5}{4} = 5(45)=5, 24=162^4 = 1624=16, (54)x124=5⋅16x=80x\binom{5}{4}x^1 2^4 = 5 \cdot 16 x = 80x(45)x124=5⋅16x=80x* (55)=1\binom{5}{5} = 1(55)=1, 25=322^5 = 3225=32, (55)x025=32\binom{5}{5}x^0 2^5 = 32(55)x025=32よって、(x+2)5=x5+10x4+40x3+80x2+80x+32(x+2)^5 = x^5 + 10x^4 + 40x^3 + 80x^2 + 80x + 32(x+2)5=x5+10x4+40x3+80x2+80x+323. 最終的な答えアイ: 10ウエ: 40オカ: 80キク: 80