$x = \frac{1}{\sqrt{7}-\sqrt{5}}$、$y = \frac{1}{\sqrt{7}+\sqrt{5}}$ のとき、次の式の値を求めます。 (1) $x+y$, $xy$ (2) $x^2+y^2$代数学式の計算有理化平方根式の値2025/5/61. 問題の内容x=17−5x = \frac{1}{\sqrt{7}-\sqrt{5}}x=7−51、y=17+5y = \frac{1}{\sqrt{7}+\sqrt{5}}y=7+51 のとき、次の式の値を求めます。(1) x+yx+yx+y, xyxyxy(2) x2+y2x^2+y^2x2+y22. 解き方の手順まず、xxxとyyyの分母を有理化します。x=17−5=7+5(7−5)(7+5)=7+57−5=7+52x = \frac{1}{\sqrt{7}-\sqrt{5}} = \frac{\sqrt{7}+\sqrt{5}}{(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{5})} = \frac{\sqrt{7}+\sqrt{5}}{7-5} = \frac{\sqrt{7}+\sqrt{5}}{2}x=7−51=(7−5)(7+5)7+5=7−57+5=27+5y=17+5=7−5(7+5)(7−5)=7−57−5=7−52y = \frac{1}{\sqrt{7}+\sqrt{5}} = \frac{\sqrt{7}-\sqrt{5}}{(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})} = \frac{\sqrt{7}-\sqrt{5}}{7-5} = \frac{\sqrt{7}-\sqrt{5}}{2}y=7+51=(7+5)(7−5)7−5=7−57−5=27−5(1)x+y=7+52+7−52=7+5+7−52=272=7x+y = \frac{\sqrt{7}+\sqrt{5}}{2} + \frac{\sqrt{7}-\sqrt{5}}{2} = \frac{\sqrt{7}+\sqrt{5}+\sqrt{7}-\sqrt{5}}{2} = \frac{2\sqrt{7}}{2} = \sqrt{7}x+y=27+5+27−5=27+5+7−5=227=7xy=7+52⋅7−52=(7+5)(7−5)4=7−54=24=12xy = \frac{\sqrt{7}+\sqrt{5}}{2} \cdot \frac{\sqrt{7}-\sqrt{5}}{2} = \frac{(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})}{4} = \frac{7-5}{4} = \frac{2}{4} = \frac{1}{2}xy=27+5⋅27−5=4(7+5)(7−5)=47−5=42=21(2)x2+y2=(x+y)2−2xy=(7)2−2(12)=7−1=6x^2+y^2 = (x+y)^2 - 2xy = (\sqrt{7})^2 - 2(\frac{1}{2}) = 7 - 1 = 6x2+y2=(x+y)2−2xy=(7)2−2(21)=7−1=63. 最終的な答え(1) x+y=7x+y = \sqrt{7}x+y=7, xy=12xy = \frac{1}{2}xy=21(2) x2+y2=6x^2+y^2 = 6x2+y2=6