$x = \frac{1}{\sqrt{2}+1}$、 $y = \frac{1}{\sqrt{2}-1}$のとき、以下の式の値を求めよ。 (1) $x+y$, $xy$ (2) $x^2+y^2$ (3) $x^2y+xy^2$代数学式の計算有理化平方根式の値2025/5/61. 問題の内容x=12+1x = \frac{1}{\sqrt{2}+1}x=2+11、 y=12−1y = \frac{1}{\sqrt{2}-1}y=2−11のとき、以下の式の値を求めよ。(1) x+yx+yx+y, xyxyxy(2) x2+y2x^2+y^2x2+y2(3) x2y+xy2x^2y+xy^2x2y+xy22. 解き方の手順まず、xxxとyyyをそれぞれ有理化します。x=12+1=2−1(2+1)(2−1)=2−12−1=2−1x = \frac{1}{\sqrt{2}+1} = \frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)} = \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1x=2+11=(2+1)(2−1)2−1=2−12−1=2−1y=12−1=2+1(2−1)(2+1)=2+12−1=2+1y = \frac{1}{\sqrt{2}-1} = \frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{\sqrt{2}+1}{2-1} = \sqrt{2}+1y=2−11=(2−1)(2+1)2+1=2−12+1=2+1(1)x+y=(2−1)+(2+1)=22x+y = (\sqrt{2}-1) + (\sqrt{2}+1) = 2\sqrt{2}x+y=(2−1)+(2+1)=22xy=(2−1)(2+1)=2−1=1xy = (\sqrt{2}-1)(\sqrt{2}+1) = 2-1 = 1xy=(2−1)(2+1)=2−1=1(2)x2+y2=(x+y)2−2xy=(22)2−2(1)=8−2=6x^2+y^2 = (x+y)^2 - 2xy = (2\sqrt{2})^2 - 2(1) = 8-2 = 6x2+y2=(x+y)2−2xy=(22)2−2(1)=8−2=6(3)x2y+xy2=xy(x+y)=(1)(22)=22x^2y+xy^2 = xy(x+y) = (1)(2\sqrt{2}) = 2\sqrt{2}x2y+xy2=xy(x+y)=(1)(22)=223. 最終的な答え(1) x+y=22x+y = 2\sqrt{2}x+y=22, xy=1xy = 1xy=1(2) x2+y2=6x^2+y^2 = 6x2+y2=6(3) x2y+xy2=22x^2y+xy^2 = 2\sqrt{2}x2y+xy2=22