与えられた式 $(8x - 2y - 12) \div 2$ を計算して簡単にしてください。代数学式の計算分配法則多項式2025/3/191. 問題の内容与えられた式 (8x−2y−12)÷2(8x - 2y - 12) \div 2(8x−2y−12)÷2 を計算して簡単にしてください。2. 解き方の手順括弧の中の各項を2で割ります。(8x−2y−12)÷2=8x2−2y2−122 (8x - 2y - 12) \div 2 = \frac{8x}{2} - \frac{2y}{2} - \frac{12}{2} (8x−2y−12)÷2=28x−22y−212次に、それぞれの項を計算します。8x2=4x\frac{8x}{2} = 4x28x=4x2y2=y\frac{2y}{2} = y22y=y122=6\frac{12}{2} = 6212=6したがって、(8x−2y−12)÷2=4x−y−6 (8x - 2y - 12) \div 2 = 4x - y - 6 (8x−2y−12)÷2=4x−y−63. 最終的な答え4x−y−64x - y - 64x−y−6