$x = 3 - 2\sqrt{2}$ のとき、$x + \frac{1}{x}$、 $x^2 + \frac{1}{x^2}$、 $x^3 + \frac{1}{x^3}$ の値を求めよ。代数学式の計算有理化展開二乗三乗2025/5/71. 問題の内容x=3−22x = 3 - 2\sqrt{2}x=3−22 のとき、x+1xx + \frac{1}{x}x+x1、 x2+1x2x^2 + \frac{1}{x^2}x2+x21、 x3+1x3x^3 + \frac{1}{x^3}x3+x31 の値を求めよ。2. 解き方の手順まず、1x\frac{1}{x}x1 を求めます。1x=13−22\frac{1}{x} = \frac{1}{3 - 2\sqrt{2}}x1=3−221分母を有理化するために、分母の共役である 3+223 + 2\sqrt{2}3+22 を分母と分子に掛けます。1x=13−22⋅3+223+22\frac{1}{x} = \frac{1}{3 - 2\sqrt{2}} \cdot \frac{3 + 2\sqrt{2}}{3 + 2\sqrt{2}}x1=3−221⋅3+223+221x=3+22(3−22)(3+22)\frac{1}{x} = \frac{3 + 2\sqrt{2}}{(3 - 2\sqrt{2})(3 + 2\sqrt{2})}x1=(3−22)(3+22)3+221x=3+2232−(22)2\frac{1}{x} = \frac{3 + 2\sqrt{2}}{3^2 - (2\sqrt{2})^2}x1=32−(22)23+221x=3+229−8\frac{1}{x} = \frac{3 + 2\sqrt{2}}{9 - 8}x1=9−83+221x=3+22\frac{1}{x} = 3 + 2\sqrt{2}x1=3+22次に、x+1xx + \frac{1}{x}x+x1 を求めます。x+1x=(3−22)+(3+22)x + \frac{1}{x} = (3 - 2\sqrt{2}) + (3 + 2\sqrt{2})x+x1=(3−22)+(3+22)x+1x=3−22+3+22x + \frac{1}{x} = 3 - 2\sqrt{2} + 3 + 2\sqrt{2}x+x1=3−22+3+22x+1x=6x + \frac{1}{x} = 6x+x1=6次に、x2+1x2x^2 + \frac{1}{x^2}x2+x21 を求めます。(x+1x)2=x2+2(x)(1x)+1x2(x + \frac{1}{x})^2 = x^2 + 2(x)(\frac{1}{x}) + \frac{1}{x^2}(x+x1)2=x2+2(x)(x1)+x21(x+1x)2=x2+2+1x2(x + \frac{1}{x})^2 = x^2 + 2 + \frac{1}{x^2}(x+x1)2=x2+2+x21x2+1x2=(x+1x)2−2x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2x2+x21=(x+x1)2−2x2+1x2=(6)2−2x^2 + \frac{1}{x^2} = (6)^2 - 2x2+x21=(6)2−2x2+1x2=36−2x^2 + \frac{1}{x^2} = 36 - 2x2+x21=36−2x2+1x2=34x^2 + \frac{1}{x^2} = 34x2+x21=34次に、x3+1x3x^3 + \frac{1}{x^3}x3+x31 を求めます。(x+1x)3=x3+3x2(1x)+3x(1x2)+1x3(x + \frac{1}{x})^3 = x^3 + 3x^2(\frac{1}{x}) + 3x(\frac{1}{x^2}) + \frac{1}{x^3}(x+x1)3=x3+3x2(x1)+3x(x21)+x31(x+1x)3=x3+3x+3x+1x3(x + \frac{1}{x})^3 = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}(x+x1)3=x3+3x+x3+x31(x+1x)3=x3+1x3+3(x+1x)(x + \frac{1}{x})^3 = x^3 + \frac{1}{x^3} + 3(x + \frac{1}{x})(x+x1)3=x3+x31+3(x+x1)x3+1x3=(x+1x)3−3(x+1x)x^3 + \frac{1}{x^3} = (x + \frac{1}{x})^3 - 3(x + \frac{1}{x})x3+x31=(x+x1)3−3(x+x1)x3+1x3=(6)3−3(6)x^3 + \frac{1}{x^3} = (6)^3 - 3(6)x3+x31=(6)3−3(6)x3+1x3=216−18x^3 + \frac{1}{x^3} = 216 - 18x3+x31=216−18x3+1x3=198x^3 + \frac{1}{x^3} = 198x3+x31=1983. 最終的な答えx+1x=6x + \frac{1}{x} = 6x+x1=6x2+1x2=34x^2 + \frac{1}{x^2} = 34x2+x21=34x3+1x3=198x^3 + \frac{1}{x^3} = 198x3+x31=198