導関数の定義に従って、以下の3つの関数の導関数を求めます。 (1) $f(x) = 2x$ (2) $f(x) = -x^2$ (3) $f(x) = -2$解析学導関数微分極限2025/5/71. 問題の内容導関数の定義に従って、以下の3つの関数の導関数を求めます。(1) f(x)=2xf(x) = 2xf(x)=2x(2) f(x)=−x2f(x) = -x^2f(x)=−x2(3) f(x)=−2f(x) = -2f(x)=−22. 解き方の手順導関数の定義は次の通りです。f′(x)=limh→0f(x+h)−f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}f′(x)=limh→0hf(x+h)−f(x)(1) f(x)=2xf(x) = 2xf(x)=2x の場合:f(x+h)=2(x+h)=2x+2hf(x+h) = 2(x+h) = 2x + 2hf(x+h)=2(x+h)=2x+2hf′(x)=limh→0(2x+2h)−2xh=limh→02hh=limh→02=2f'(x) = \lim_{h \to 0} \frac{(2x + 2h) - 2x}{h} = \lim_{h \to 0} \frac{2h}{h} = \lim_{h \to 0} 2 = 2f′(x)=limh→0h(2x+2h)−2x=limh→0h2h=limh→02=2(2) f(x)=−x2f(x) = -x^2f(x)=−x2 の場合:f(x+h)=−(x+h)2=−(x2+2xh+h2)=−x2−2xh−h2f(x+h) = -(x+h)^2 = -(x^2 + 2xh + h^2) = -x^2 - 2xh - h^2f(x+h)=−(x+h)2=−(x2+2xh+h2)=−x2−2xh−h2f′(x)=limh→0(−x2−2xh−h2)−(−x2)h=limh→0−2xh−h2h=limh→0(−2x−h)=−2xf'(x) = \lim_{h \to 0} \frac{(-x^2 - 2xh - h^2) - (-x^2)}{h} = \lim_{h \to 0} \frac{-2xh - h^2}{h} = \lim_{h \to 0} (-2x - h) = -2xf′(x)=limh→0h(−x2−2xh−h2)−(−x2)=limh→0h−2xh−h2=limh→0(−2x−h)=−2x(3) f(x)=−2f(x) = -2f(x)=−2 の場合:f(x+h)=−2f(x+h) = -2f(x+h)=−2f′(x)=limh→0−2−(−2)h=limh→00h=limh→00=0f'(x) = \lim_{h \to 0} \frac{-2 - (-2)}{h} = \lim_{h \to 0} \frac{0}{h} = \lim_{h \to 0} 0 = 0f′(x)=limh→0h−2−(−2)=limh→0h0=limh→00=03. 最終的な答え(1) f(x)=2xf(x) = 2xf(x)=2x の導関数は f′(x)=2f'(x) = 2f′(x)=2(2) f(x)=−x2f(x) = -x^2f(x)=−x2 の導関数は f′(x)=−2xf'(x) = -2xf′(x)=−2x(3) f(x)=−2f(x) = -2f(x)=−2 の導関数は f′(x)=0f'(x) = 0f′(x)=0