次の式を展開せよ。 $(2x+1)(2x-5)-(x-2)^2$代数学式の展開多項式2025/5/71. 問題の内容次の式を展開せよ。(2x+1)(2x−5)−(x−2)2(2x+1)(2x-5)-(x-2)^2(2x+1)(2x−5)−(x−2)22. 解き方の手順まず、(2x+1)(2x−5)(2x+1)(2x-5)(2x+1)(2x−5)を展開します。(2x+1)(2x−5)=2x(2x−5)+1(2x−5)=4x2−10x+2x−5=4x2−8x−5(2x+1)(2x-5) = 2x(2x-5) + 1(2x-5) = 4x^2 -10x + 2x - 5 = 4x^2 - 8x - 5(2x+1)(2x−5)=2x(2x−5)+1(2x−5)=4x2−10x+2x−5=4x2−8x−5次に、(x−2)2(x-2)^2(x−2)2を展開します。(x−2)2=(x−2)(x−2)=x2−2x−2x+4=x2−4x+4(x-2)^2 = (x-2)(x-2) = x^2 - 2x - 2x + 4 = x^2 - 4x + 4(x−2)2=(x−2)(x−2)=x2−2x−2x+4=x2−4x+4最後に、(2x+1)(2x−5)−(x−2)2(2x+1)(2x-5)-(x-2)^2(2x+1)(2x−5)−(x−2)2を計算します。(2x+1)(2x−5)−(x−2)2=(4x2−8x−5)−(x2−4x+4)=4x2−8x−5−x2+4x−4=(4x2−x2)+(−8x+4x)+(−5−4)=3x2−4x−9(2x+1)(2x-5)-(x-2)^2 = (4x^2 - 8x - 5) - (x^2 - 4x + 4) = 4x^2 - 8x - 5 - x^2 + 4x - 4 = (4x^2 - x^2) + (-8x + 4x) + (-5 - 4) = 3x^2 - 4x - 9(2x+1)(2x−5)−(x−2)2=(4x2−8x−5)−(x2−4x+4)=4x2−8x−5−x2+4x−4=(4x2−x2)+(−8x+4x)+(−5−4)=3x2−4x−93. 最終的な答え3x2−4x−93x^2 - 4x - 93x2−4x−9