与えられた循環小数を分数で表す問題です。循環小数とは、小数点以下のある桁から同じ数字の列が無限に繰り返される小数のことです。算数循環小数分数数の変換2025/5/71. 問題の内容与えられた循環小数を分数で表す問題です。循環小数とは、小数点以下のある桁から同じ数字の列が無限に繰り返される小数のことです。2. 解き方の手順(1) 0.4(4が循環)の場合x=0.444...x = 0.444...x=0.444... とおきます。10x=4.444...10x = 4.444...10x=4.444...10x−x=4.444...−0.444...10x - x = 4.444... - 0.444...10x−x=4.444...−0.444...9x=49x = 49x=4x=49x = \frac{4}{9}x=94(2) 0.79(7と9が循環)の場合x=0.797979...x = 0.797979...x=0.797979... とおきます。100x=79.797979...100x = 79.797979...100x=79.797979...100x−x=79.797979...−0.797979...100x - x = 79.797979... - 0.797979...100x−x=79.797979...−0.797979...99x=7999x = 7999x=79x=7999x = \frac{79}{99}x=9979(3) 0.456(6が循環)の場合x=0.456666...x = 0.456666...x=0.456666... とおきます。100x=45.6666...100x = 45.6666...100x=45.6666...1000x=456.6666...1000x = 456.6666...1000x=456.6666...1000x−100x=456.6666...−45.6666...1000x - 100x = 456.6666... - 45.6666...1000x−100x=456.6666...−45.6666...900x=411900x = 411900x=411x=411900x = \frac{411}{900}x=900411x=137300x = \frac{137}{300}x=300137(4) -3.972(7と2が循環)の場合x=3.9727272...x = 3.9727272...x=3.9727272... とおきます。10x=39.727272...10x = 39.727272...10x=39.727272...1000x=3972.727272...1000x = 3972.727272...1000x=3972.727272...1000x−10x=3972.727272...−39.727272...1000x - 10x = 3972.727272... - 39.727272...1000x−10x=3972.727272...−39.727272...990x=3933990x = 3933990x=3933x=3933990x = \frac{3933}{990}x=9903933x=1311330x = \frac{1311}{330}x=3301311x=437110x = \frac{437}{110}x=110437求める答えは−x-x−xなので、−437110-\frac{437}{110}−1104373. 最終的な答え(1) 49\frac{4}{9}94(2) 7999\frac{79}{99}9979(3) 137300\frac{137}{300}300137(4) −437110-\frac{437}{110}−110437