$0 \leq \theta < 2\pi$ のとき、次の不等式を満たす $\theta$ の値の範囲を求める問題です。 $\sin \theta > \frac{1}{\sqrt{2}}$

幾何学三角関数不等式単位円角度
2025/5/7

1. 問題の内容

0θ<2π0 \leq \theta < 2\pi のとき、次の不等式を満たす θ\theta の値の範囲を求める問題です。
sinθ>12\sin \theta > \frac{1}{\sqrt{2}}

2. 解き方の手順

sinθ>12\sin \theta > \frac{1}{\sqrt{2}} を満たす θ\theta の範囲を単位円で考えます。
sinθ=12\sin \theta = \frac{1}{\sqrt{2}} となる θ\theta は、θ=π4\theta = \frac{\pi}{4}θ=3π4\theta = \frac{3\pi}{4} です。
sinθ>12\sin \theta > \frac{1}{\sqrt{2}} となるのは、単位円上で yy 座標が 12\frac{1}{\sqrt{2}} より大きくなる範囲なので、π4<θ<3π4\frac{\pi}{4} < \theta < \frac{3\pi}{4} となります。

3. 最終的な答え

π4<θ<3π4\frac{\pi}{4} < \theta < \frac{3\pi}{4}
選択肢の中から該当するものを選ぶと、2が正解です。

「幾何学」の関連問題

直線 $2x-y+2=0$ を $l$ とする。直線 $l$ に関して点 $A(2, 1)$ と対称な点 $B$ の座標を求める。

座標平面直線対称点連立方程式
2025/5/8

点A(3, -1)を通り、直線 $3x + 2y + 1 = 0$ に垂直な直線の方程式と、平行な直線の方程式をそれぞれ求める。

直線方程式垂直平行傾き
2025/5/8

2点A(4, 0, 5)とB(0, 2, 1)を通る直線上の点のうち、原点Oとの距離が最小となる点をPとする。 (1) 直線ABと直線OPの間に成り立つ関係を予想せよ。 (2) 点Pの座標を求めよ。ま...

ベクトル空間ベクトル直線距離内積
2025/5/8

与えられた2つの直線がそれぞれ平行、垂直のいずれであるかを判定する問題です。問題は4つあります。 (1) $y = 4x + 1$, $y = 4x - 3$ (2) $y = 3x - 1$, $x...

直線平行垂直傾き
2025/5/8

直方体OADB-CEGFにおいて、DG = GHとなるように点Hをとる。直線OHと平面ABCの交点をPとする。$\vec{OA}=\vec{a}$, $\vec{OB}=\vec{b}$, $\vec...

ベクトル空間ベクトル平面直方体内積
2025/5/8

直方体OADB-CGFにおいて、辺DGのGを越える延長上にDG = GHとなるように点Hをとる。直線OHと平面ABCの交点をPとする。ベクトル$OA = a, OB = b, OC = c$とするとき...

ベクトル空間ベクトル直方体平面の方程式線分の内分点
2025/5/8

$\triangle OAB$ において、辺 $OA$ を $3:2$ に内分する点を $C$、辺 $OB$ を $1:2$ に内分する点を $D$ とする。線分 $AD$ と線分 $BC$ の交点を...

ベクトル内分交点
2025/5/8

直方体OADB-CEGFにおいて、辺DGの延長上にDG = GHとなる点Hを取る。直線OHと平面ABCの交点をPとする。$\overrightarrow{OA} = \vec{a}$, $\overr...

ベクトル空間ベクトル交点直方体
2025/5/8

四角形 $ABCD$ と四角形 $A'B'C'D'$ について、以下の条件がそれぞれ、四角形が合同または相似であるための必要条件、十分条件、必要十分条件、またはそのいずれでもないかを選びます。 (1)...

合同相似四角形必要条件十分条件必要十分条件
2025/5/8

四角形ABCDと四角形A'B'C'D'について、以下の2つの条件が成り立つとき、それぞれ合同であるため、相似であるための必要十分条件を問う問題です。 (1) AB=A'B', BC=B'C', CD=...

相似合同四角形必要十分条件
2025/5/8