次の不等式を解きます。 $\frac{1}{2}x - 1 \le \frac{2}{7}x + \frac{1}{2}$

代数学不等式一次不等式計算
2025/5/8

1. 問題の内容

次の不等式を解きます。
12x127x+12\frac{1}{2}x - 1 \le \frac{2}{7}x + \frac{1}{2}

2. 解き方の手順

まず、不等式の両辺に14を掛けて分母を払います。14は2と7の最小公倍数です。
14×(12x1)14×(27x+12)14 \times (\frac{1}{2}x - 1) \le 14 \times (\frac{2}{7}x + \frac{1}{2})
7x144x+77x - 14 \le 4x + 7
次に、4x4x を左辺に、14−14 を右辺に移項します。
7x4x7+147x - 4x \le 7 + 14
3x213x \le 21
最後に、両辺を3で割ります。
x213x \le \frac{21}{3}
x7x \le 7

3. 最終的な答え

x7x \le 7

「代数学」の関連問題

与えられた数式の値を計算する問題です。数式は $\frac{2-\sqrt{3}}{2+\sqrt{3}}$ です。

式の計算有理化平方根
2025/5/8

与えられた数式を計算する問題です。数式は $(\sqrt{12} - \sqrt{8})(\sqrt{48} + \sqrt{32})$ です。

根号式の計算展開平方根
2025/5/8

与えられた式 $4x^2 + 7xy + 4y^2$ を因数分解します。

因数分解二次形式多項式
2025/5/8

与えられた分数の分母を有理化する問題です。 与えられた分数は $\frac{\sqrt{3}}{2-\sqrt{5}}$ です。

分母の有理化平方根代数
2025/5/8

$x = \frac{\sqrt{6} + \sqrt{2}}{2}$ のとき、以下の式の値を求めよ。 (1) $x + \frac{1}{x}$ (2) $x^2 + \frac{1}{x^2}$ ...

式の計算有理化展開累乗
2025/5/8

与えられた式 $\frac{2}{\sqrt{3}+1}$ を計算し、分母を有理化して簡略化する。

分母の有理化式の簡略化平方根
2025/5/8

$a$ が与えられた値をとるとき、$|a-1|+|a+2|$ の値を求めよ。 (1) $a=3$ (2) $a=0$ (3) $a=-1$ (4) $a=-\sqrt{3}$

絶対値式の計算場合分け
2025/5/8

$a$ が与えられた値をとるとき、式 $|-11+a|+2$ の値を求める問題です。$a$ の値はそれぞれ、3, 0, -1, $-\sqrt{3}$ の4つの場合について計算します。

絶対値式の計算
2025/5/8

放物線 $y = x^2 + 2x$ を $y$軸に関して対称移動し、さらに$x$軸方向に $-4$、$y$軸方向に $4$ だけ平行移動した放物線を $C_1$ とする。また、放物線 $y = x^...

放物線平行移動対称移動二次関数接する
2025/5/8

$n$ は自然数、$x_1, x_2, \dots, x_{2n}$ は 0 以上の整数とする。以下の式(1)~(3)について考える。 (1) $\sum_{k=1}^{n} x_k \leq n$ ...

組み合わせ二項係数不等式
2025/5/8