与えられた10個の多項式の積を展開しなさい。代数学多項式の展開代数2025/5/8承知いたしました。画像に写っている10個の問題全てを解いて、回答形式に沿って記述します。1. 問題の内容与えられた10個の多項式の積を展開しなさい。2. 解き方の手順各問題について、分配法則を用いて展開し、同類項をまとめる。問題1: (x−4)(x−3y+2)(x-4)(x-3y+2)(x−4)(x−3y+2)x(x−3y+2)−4(x−3y+2)=x2−3xy+2x−4x+12y−8=x2−3xy−2x+12y−8x(x-3y+2) - 4(x-3y+2) = x^2 - 3xy + 2x - 4x + 12y - 8 = x^2 - 3xy - 2x + 12y - 8x(x−3y+2)−4(x−3y+2)=x2−3xy+2x−4x+12y−8=x2−3xy−2x+12y−8問題2: (2a−b)(3a+2b−1)(2a-b)(3a+2b-1)(2a−b)(3a+2b−1)2a(3a+2b−1)−b(3a+2b−1)=6a2+4ab−2a−3ab−2b2+b=6a2+ab−2a−2b2+b2a(3a+2b-1) - b(3a+2b-1) = 6a^2 + 4ab - 2a - 3ab - 2b^2 + b = 6a^2 + ab - 2a - 2b^2 + b2a(3a+2b−1)−b(3a+2b−1)=6a2+4ab−2a−3ab−2b2+b=6a2+ab−2a−2b2+b問題3: (x−2y)(2x−y+1)(x-2y)(2x-y+1)(x−2y)(2x−y+1)x(2x−y+1)−2y(2x−y+1)=2x2−xy+x−4xy+2y2−2y=2x2−5xy+x+2y2−2yx(2x-y+1) - 2y(2x-y+1) = 2x^2 - xy + x - 4xy + 2y^2 - 2y = 2x^2 - 5xy + x + 2y^2 - 2yx(2x−y+1)−2y(2x−y+1)=2x2−xy+x−4xy+2y2−2y=2x2−5xy+x+2y2−2y問題4: (x+y−2)(3x−y+3)(x+y-2)(3x-y+3)(x+y−2)(3x−y+3)x(3x−y+3)+y(3x−y+3)−2(3x−y+3)=3x2−xy+3x+3xy−y2+3y−6x+2y−6=3x2+2xy−3x−y2+5y−6x(3x-y+3) + y(3x-y+3) - 2(3x-y+3) = 3x^2 - xy + 3x + 3xy - y^2 + 3y - 6x + 2y - 6 = 3x^2 + 2xy - 3x - y^2 + 5y - 6x(3x−y+3)+y(3x−y+3)−2(3x−y+3)=3x2−xy+3x+3xy−y2+3y−6x+2y−6=3x2+2xy−3x−y2+5y−6問題5: (x+2)(x+4)(x+2)(x+4)(x+2)(x+4)x(x+4)+2(x+4)=x2+4x+2x+8=x2+6x+8x(x+4) + 2(x+4) = x^2 + 4x + 2x + 8 = x^2 + 6x + 8x(x+4)+2(x+4)=x2+4x+2x+8=x2+6x+8問題6: (x−3)(x−5)(x-3)(x-5)(x−3)(x−5)x(x−5)−3(x−5)=x2−5x−3x+15=x2−8x+15x(x-5) - 3(x-5) = x^2 - 5x - 3x + 15 = x^2 - 8x + 15x(x−5)−3(x−5)=x2−5x−3x+15=x2−8x+15問題7: (a+4)(a−3)(a+4)(a-3)(a+4)(a−3)a(a−3)+4(a−3)=a2−3a+4a−12=a2+a−12a(a-3) + 4(a-3) = a^2 - 3a + 4a - 12 = a^2 + a - 12a(a−3)+4(a−3)=a2−3a+4a−12=a2+a−12問題8: (x−11)(x+10)(x-11)(x+10)(x−11)(x+10)x(x+10)−11(x+10)=x2+10x−11x−110=x2−x−110x(x+10) - 11(x+10) = x^2 + 10x - 11x - 110 = x^2 - x - 110x(x+10)−11(x+10)=x2+10x−11x−110=x2−x−110問題9: (3+x)(1+x)(3+x)(1+x)(3+x)(1+x)3(1+x)+x(1+x)=3+3x+x+x2=x2+4x+33(1+x) + x(1+x) = 3 + 3x + x + x^2 = x^2 + 4x + 33(1+x)+x(1+x)=3+3x+x+x2=x2+4x+3問題10: (x+0.2)(x+0.3)(x+0.2)(x+0.3)(x+0.2)(x+0.3)x(x+0.3)+0.2(x+0.3)=x2+0.3x+0.2x+0.06=x2+0.5x+0.06x(x+0.3) + 0.2(x+0.3) = x^2 + 0.3x + 0.2x + 0.06 = x^2 + 0.5x + 0.06x(x+0.3)+0.2(x+0.3)=x2+0.3x+0.2x+0.06=x2+0.5x+0.063. 最終的な答え問題1: x2−3xy−2x+12y−8x^2 - 3xy - 2x + 12y - 8x2−3xy−2x+12y−8問題2: 6a2+ab−2a−2b2+b6a^2 + ab - 2a - 2b^2 + b6a2+ab−2a−2b2+b問題3: 2x2−5xy+x+2y2−2y2x^2 - 5xy + x + 2y^2 - 2y2x2−5xy+x+2y2−2y問題4: 3x2+2xy−3x−y2+5y−63x^2 + 2xy - 3x - y^2 + 5y - 63x2+2xy−3x−y2+5y−6問題5: x2+6x+8x^2 + 6x + 8x2+6x+8問題6: x2−8x+15x^2 - 8x + 15x2−8x+15問題7: a2+a−12a^2 + a - 12a2+a−12問題8: x2−x−110x^2 - x - 110x2−x−110問題9: x2+4x+3x^2 + 4x + 3x2+4x+3問題10: x2+0.5x+0.06x^2 + 0.5x + 0.06x2+0.5x+0.06