$\int_{\alpha}^{\beta} (x - \alpha)(x - \beta) \, dx = -\frac{1}{6}(\beta - \alpha)^3$ が成り立つことを示す。解析学積分定積分積分計算2025/5/101. 問題の内容∫αβ(x−α)(x−β) dx=−16(β−α)3\int_{\alpha}^{\beta} (x - \alpha)(x - \beta) \, dx = -\frac{1}{6}(\beta - \alpha)^3∫αβ(x−α)(x−β)dx=−61(β−α)3 が成り立つことを示す。2. 解き方の手順まず、積分の中身を展開します。(x−α)(x−β)=x2−(α+β)x+αβ(x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha \beta(x−α)(x−β)=x2−(α+β)x+αβ次に、積分を計算します。∫αβ(x2−(α+β)x+αβ) dx=[13x3−12(α+β)x2+αβx]αβ\int_{\alpha}^{\beta} (x^2 - (\alpha + \beta)x + \alpha \beta) \, dx = \left[ \frac{1}{3}x^3 - \frac{1}{2}(\alpha + \beta)x^2 + \alpha \beta x \right]_{\alpha}^{\beta}∫αβ(x2−(α+β)x+αβ)dx=[31x3−21(α+β)x2+αβx]αβ積分範囲の端点を代入して計算します。=(13β3−12(α+β)β2+αβ2)−(13α3−12(α+β)α2+α2β)= \left( \frac{1}{3}\beta^3 - \frac{1}{2}(\alpha + \beta)\beta^2 + \alpha \beta^2 \right) - \left( \frac{1}{3}\alpha^3 - \frac{1}{2}(\alpha + \beta)\alpha^2 + \alpha^2 \beta \right)=(31β3−21(α+β)β2+αβ2)−(31α3−21(α+β)α2+α2β)=13(β3−α3)−12(αβ2+β3−α3−α2β)+αβ2−α2β= \frac{1}{3}(\beta^3 - \alpha^3) - \frac{1}{2}(\alpha \beta^2 + \beta^3 - \alpha^3 - \alpha^2 \beta) + \alpha \beta^2 - \alpha^2 \beta=31(β3−α3)−21(αβ2+β3−α3−α2β)+αβ2−α2β=13(β3−α3)−12β3+12α3+12αβ2−12α2β+αβ2−α2β= \frac{1}{3}(\beta^3 - \alpha^3) - \frac{1}{2} \beta^3 + \frac{1}{2}\alpha^3 + \frac{1}{2}\alpha \beta^2 - \frac{1}{2}\alpha^2 \beta + \alpha \beta^2 - \alpha^2 \beta=31(β3−α3)−21β3+21α3+21αβ2−21α2β+αβ2−α2β=13(β3−α3)−12(β3−α3)+32αβ2−32α2β= \frac{1}{3}(\beta^3 - \alpha^3) - \frac{1}{2}(\beta^3 - \alpha^3) + \frac{3}{2} \alpha \beta^2 - \frac{3}{2} \alpha^2 \beta=31(β3−α3)−21(β3−α3)+23αβ2−23α2β=−16(β3−α3)+32αβ(β−α)= -\frac{1}{6}(\beta^3 - \alpha^3) + \frac{3}{2} \alpha \beta (\beta - \alpha)=−61(β3−α3)+23αβ(β−α)=−16(β−α)(β2+βα+α2)+32αβ(β−α)= -\frac{1}{6}(\beta - \alpha)(\beta^2 + \beta \alpha + \alpha^2) + \frac{3}{2}\alpha \beta (\beta - \alpha)=−61(β−α)(β2+βα+α2)+23αβ(β−α)=−16(β−α)(β2+βα+α2−9αβ)= -\frac{1}{6}(\beta - \alpha)(\beta^2 + \beta \alpha + \alpha^2 - 9\alpha \beta)=−61(β−α)(β2+βα+α2−9αβ)=−16(β−α)(β2−8βα+α2)= -\frac{1}{6}(\beta - \alpha)(\beta^2 - 8 \beta \alpha + \alpha^2)=−61(β−α)(β2−8βα+α2)=−16(β−α)(β2−2βα+α2−6βα)= -\frac{1}{6}(\beta - \alpha)(\beta^2 - 2\beta \alpha + \alpha^2 - 6\beta \alpha)=−61(β−α)(β2−2βα+α2−6βα)=−16(β−α)((β−α)2−6βα)= -\frac{1}{6}(\beta - \alpha)((\beta - \alpha)^2 - 6\beta \alpha)=−61(β−α)((β−α)2−6βα)=−16(β−α)3= -\frac{1}{6}(\beta - \alpha)^3=−61(β−α)3.したがって、∫αβ(x−α)(x−β) dx=−16(β−α)3\int_{\alpha}^{\beta} (x - \alpha)(x - \beta) \, dx = -\frac{1}{6}(\beta - \alpha)^3∫αβ(x−α)(x−β)dx=−61(β−α)3 が成り立つ。3. 最終的な答え∫αβ(x−α)(x−β) dx=−16(β−α)3\int_{\alpha}^{\beta} (x - \alpha)(x - \beta) \, dx = -\frac{1}{6}(\beta - \alpha)^3∫αβ(x−α)(x−β)dx=−61(β−α)3