与えられた定積分 $\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \cos(t)\cos(3t) dt$ を計算します。解析学定積分三角関数積和の公式2025/5/11はい、承知いたしました。画像に書かれた数学の問題を解いていきます。1. 問題の内容与えられた定積分 ∫π65π6cos(t)cos(3t)dt\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \cos(t)\cos(3t) dt∫6π65πcos(t)cos(3t)dt を計算します。2. 解き方の手順積和の公式を用いて、被積分関数を変形します。cos(A)cos(B)=12[cos(A+B)+cos(A−B)]\cos(A)\cos(B) = \frac{1}{2}[\cos(A+B) + \cos(A-B)]cos(A)cos(B)=21[cos(A+B)+cos(A−B)]これを用いると、cos(t)cos(3t)=12[cos(4t)+cos(−2t)]=12[cos(4t)+cos(2t)]\cos(t)\cos(3t) = \frac{1}{2}[\cos(4t) + \cos(-2t)] = \frac{1}{2}[\cos(4t) + \cos(2t)]cos(t)cos(3t)=21[cos(4t)+cos(−2t)]=21[cos(4t)+cos(2t)]したがって、積分は∫π65π6cos(t)cos(3t)dt=12∫π65π6[cos(4t)+cos(2t)]dt\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \cos(t)\cos(3t) dt = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} [\cos(4t) + \cos(2t)] dt∫6π65πcos(t)cos(3t)dt=21∫6π65π[cos(4t)+cos(2t)]dt12∫π65π6cos(4t)dt+12∫π65π6cos(2t)dt\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \cos(4t) dt + \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \cos(2t) dt21∫6π65πcos(4t)dt+21∫6π65πcos(2t)dt12[14sin(4t)]π65π6+12[12sin(2t)]π65π6\frac{1}{2} [\frac{1}{4} \sin(4t)]_{\frac{\pi}{6}}^{\frac{5\pi}{6}} + \frac{1}{2} [\frac{1}{2} \sin(2t)]_{\frac{\pi}{6}}^{\frac{5\pi}{6}}21[41sin(4t)]6π65π+21[21sin(2t)]6π65π18[sin(20π6)−sin(4π6)]+14[sin(10π6)−sin(2π6)]\frac{1}{8} [\sin(\frac{20\pi}{6}) - \sin(\frac{4\pi}{6})] + \frac{1}{4} [\sin(\frac{10\pi}{6}) - \sin(\frac{2\pi}{6})]81[sin(620π)−sin(64π)]+41[sin(610π)−sin(62π)]18[sin(10π3)−sin(2π3)]+14[sin(5π3)−sin(π3)]\frac{1}{8} [\sin(\frac{10\pi}{3}) - \sin(\frac{2\pi}{3})] + \frac{1}{4} [\sin(\frac{5\pi}{3}) - \sin(\frac{\pi}{3})]81[sin(310π)−sin(32π)]+41[sin(35π)−sin(3π)]sin(10π3)=sin(4π3)=−32\sin(\frac{10\pi}{3}) = \sin(\frac{4\pi}{3}) = -\frac{\sqrt{3}}{2}sin(310π)=sin(34π)=−23sin(2π3)=32\sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2}sin(32π)=23sin(5π3)=−32\sin(\frac{5\pi}{3}) = -\frac{\sqrt{3}}{2}sin(35π)=−23sin(π3)=32\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}sin(3π)=2318[−32−32]+14[−32−32]\frac{1}{8}[-\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}] + \frac{1}{4}[-\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}]81[−23−23]+41[−23−23]18[−3]+14[−3]=−38−34=−38−238=−338\frac{1}{8}[-\sqrt{3}] + \frac{1}{4}[-\sqrt{3}] = -\frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{4} = -\frac{\sqrt{3}}{8} - \frac{2\sqrt{3}}{8} = -\frac{3\sqrt{3}}{8}81[−3]+41[−3]=−83−43=−83−823=−8333. 最終的な答え−338-\frac{3\sqrt{3}}{8}−833