11人の生徒の中から、リレーに参加する8人を選ぶ方法は何通りあるかを求める問題です。確率論・統計学組み合わせ組み合わせ論場合の数2025/5/111. 問題の内容11人の生徒の中から、リレーに参加する8人を選ぶ方法は何通りあるかを求める問題です。2. 解き方の手順この問題は組み合わせの問題です。11人の中から8人を選ぶ組み合わせの数を計算します。組み合わせの公式は nCr=n!r!(n−r)!nCr = \frac{n!}{r!(n-r)!}nCr=r!(n−r)!n! です。ここで、nnn は全体の人数(11人)、rrr は選ぶ人数(8人)です。したがって、11C8=11!8!(11−8)!=11!8!3!=11×10×93×2×1=11×5×3=16511C8 = \frac{11!}{8!(11-8)!} = \frac{11!}{8!3!} = \frac{11 \times 10 \times 9}{3 \times 2 \times 1} = 11 \times 5 \times 3 = 16511C8=8!(11−8)!11!=8!3!11!=3×2×111×10×9=11×5×3=165 通りとなります。3. 最終的な答え165通り