(1) 6人の候補選手の中から、リレーの第1走者から第4走者までを決める方法の総数を求めよ。 (2) 1から8までの番号がついた8個の1人用の座席に3人が座る方法の総数を求めよ。

確率論・統計学順列組み合わせ場合の数数え上げ
2025/5/24
## 数学の問題の解答

1. 問題の内容

(1) 6人の候補選手の中から、リレーの第1走者から第4走者までを決める方法の総数を求めよ。
(2) 1から8までの番号がついた8個の1人用の座席に3人が座る方法の総数を求めよ。

2. 解き方の手順

(1) 6人の候補選手から4人を選び、順番を決める問題です。これは順列の問題なので、順列の公式を用います。
順列の公式は nPr=n!(nr)!nPr = \frac{n!}{(n-r)!} です。
ここで、nn は候補の人数、rr は選ぶ人数です。
この問題では、n=6n = 6r=4r = 4 なので、
6P4=6!(64)!=6!2!=6×5×4×3×2×12×1=6×5×4×3=3606P4 = \frac{6!}{(6-4)!} = \frac{6!}{2!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1} = 6 \times 5 \times 4 \times 3 = 360 となります。
(2) 8個の座席から3つの座席を選び、3人が座る順番を考える問題です。
これも順列の問題なので、順列の公式を用います。
n=8n = 8r=3r = 3 なので、
8P3=8!(83)!=8!5!=8×7×6×5!5!=8×7×6=3368P3 = \frac{8!}{(8-3)!} = \frac{8!}{5!} = \frac{8 \times 7 \times 6 \times 5!}{5!} = 8 \times 7 \times 6 = 336 となります。

3. 最終的な答え

(1) 360通り
(2) 336通り

「確率論・統計学」の関連問題

グラフは年齢別の海外在住邦人数を示しています。50歳以上の海外在住邦人全体に占める女性の割合を、選択肢の中から最も近いものを選びます。

割合グラフ読解データ分析
2025/5/24

グラフは日本の海外旅行者数の推移を示しています。前年比で旅行者数が増加している年度のうち、2番目に増加率が高いのはいつかという問題です。選択肢は、平成18年度、平成19年度、平成20年度、平成24年度...

グラフ割合比較
2025/5/24

母音a, i, u, e, oと子音k, s, tの合計8個の文字を1列に並べる。 (1) 両端が母音であるような並べ方は何通りあるか。 (2) 母音5個が続いて並ぶような並べ方は何通りあるか。

順列組み合わせ場合の数
2025/5/24

大人4人と子ども3人が1列に並ぶとき、子ども3人が続いて並ぶような並び方は何通りあるかを求める問題です。

順列組み合わせ場合の数並び方
2025/5/24

大、中、小の3つのサイコロを投げるとき、以下の問いに答える問題です。 (1) 目の和が5になる場合は何通りあるか。 (2) 目の積が6になる場合は何通りあるか。

確率場合の数サイコロ組み合わせ
2025/5/24

1つのサイコロを2回投げたとき、目の和が指定された条件を満たす場合の数を求めます。 (1) 目の和が7または8となる場合 (2) 目の和が6の倍数となる場合 (3) 目の和が4の倍数となる場合

確率サイコロ場合の数
2025/5/24

A中学校とB中学校の1年生男子のハンドボール投げの記録が度数分布表にまとめられています。表の一部が空欄になっているので、それを埋めて表を完成させる問題です。

度数分布相対度数統計データ分析
2025/5/24

問題文は以下の通りです。 1. 白球4個と赤球1個が入った袋から球を1個取り出し、色を確認後袋に戻す。これを3回繰り返すときの以下の確率を求める。 (1) 3回とも白球が出る確率...

確率期待値組み合わせ二項分布
2025/5/24

右図のような街路があり、隣り合う2つの曲がり角の間の距離はすべて1である。甲君は曲がり角Aから、乙君は曲がり角Bから出発する。曲がり角ごとに各々がさいころを同時に振り、出た目の数1, 2, 3, 4,...

確率サイコロ移動確率分布組み合わせ
2025/5/24

表が出る確率が $a$ $(0 < a < \frac{1}{2})$、裏が出る確率が $1-a$ のコインを $n$ 回投げる試行を考えます。ただし、$n \ge 2$ とします。 $A_n$ を、...

確率事象条件付き確率極限コイン
2025/5/24