次の3つの式を展開する問題です。 (1) $(x-2y+1)(x-2y-2)$ (2) $(a+b+c)^2$ (3) $(x^2+x-1)(x^2-x+1)$代数学展開多項式置換2025/5/111. 問題の内容次の3つの式を展開する問題です。(1) (x−2y+1)(x−2y−2)(x-2y+1)(x-2y-2)(x−2y+1)(x−2y−2)(2) (a+b+c)2(a+b+c)^2(a+b+c)2(3) (x2+x−1)(x2−x+1)(x^2+x-1)(x^2-x+1)(x2+x−1)(x2−x+1)2. 解き方の手順(1)x−2y=Ax-2y = Ax−2y=A と置換すると、(A+1)(A−2)=A2−A−2(A+1)(A-2) = A^2 - A - 2(A+1)(A−2)=A2−A−2ここで A=x−2yA = x-2yA=x−2y を代入して、(x−2y)2−(x−2y)−2=x2−4xy+4y2−x+2y−2(x-2y)^2 - (x-2y) - 2 = x^2 - 4xy + 4y^2 - x + 2y - 2(x−2y)2−(x−2y)−2=x2−4xy+4y2−x+2y−2(2)(a+b+c)2=(a+b+c)(a+b+c)(a+b+c)^2 = (a+b+c)(a+b+c)(a+b+c)2=(a+b+c)(a+b+c)=a(a+b+c)+b(a+b+c)+c(a+b+c)= a(a+b+c) + b(a+b+c) + c(a+b+c)=a(a+b+c)+b(a+b+c)+c(a+b+c)=a2+ab+ac+ba+b2+bc+ca+cb+c2= a^2 + ab + ac + ba + b^2 + bc + ca + cb + c^2=a2+ab+ac+ba+b2+bc+ca+cb+c2=a2+b2+c2+2ab+2bc+2ca= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca=a2+b2+c2+2ab+2bc+2caまたは、(a+b+c)2={(a+b)+c}2=(a+b)2+2(a+b)c+c2(a+b+c)^2 = \{(a+b)+c\}^2 = (a+b)^2 + 2(a+b)c + c^2(a+b+c)2={(a+b)+c}2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2= a^2 + 2ab + b^2 + 2ac + 2bc + c^2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2bc+2ca= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca=a2+b2+c2+2ab+2bc+2ca(3)x2+1=Ax^2+1 = Ax2+1=A と置換すると、(A+x−2)(A−x)=(A+(x−2))(A−x)(A+x-2)(A-x) = (A+(x-2))(A-x)(A+x−2)(A−x)=(A+(x−2))(A−x)(A+x−2)(A−x)=(x2+x−1)(x2−x+1)=(x2+1+x−2)(x2+1−x)(A+x-2)(A-x)= (x^2+x-1)(x^2-x+1) = (x^2+1+x-2)(x^2+1-x)(A+x−2)(A−x)=(x2+x−1)(x2−x+1)=(x2+1+x−2)(x2+1−x)(x2+x−1)(x2−x+1)(x^2+x-1)(x^2-x+1)(x2+x−1)(x2−x+1)=((x2+1)+x)((x2+1)−x)= ((x^2+1)+x)((x^2+1)-x)=((x2+1)+x)((x2+1)−x)=(x2+1)2−x2= (x^2+1)^2 - x^2=(x2+1)2−x2=(x4+2x2+1)−x2= (x^4+2x^2+1) - x^2=(x4+2x2+1)−x2=x4+x2+1= x^4 + x^2 + 1=x4+x2+13. 最終的な答え(1) x2−4xy+4y2−x+2y−2x^2 - 4xy + 4y^2 - x + 2y - 2x2−4xy+4y2−x+2y−2(2) a2+b2+c2+2ab+2bc+2caa^2 + b^2 + c^2 + 2ab + 2bc + 2caa2+b2+c2+2ab+2bc+2ca(3) x4+x2+1x^4 + x^2 + 1x4+x2+1