次の式を簡単にせよ。 $\frac{5}{3} \sqrt[6]{9} + \sqrt[3]{-81} + \sqrt[3]{\frac{1}{9}}$代数学根号式の計算累乗根2025/5/131. 問題の内容次の式を簡単にせよ。5396+−813+193\frac{5}{3} \sqrt[6]{9} + \sqrt[3]{-81} + \sqrt[3]{\frac{1}{9}}3569+3−81+3912. 解き方の手順まず、各項を簡単にします。96=326=326=313=33\sqrt[6]{9} = \sqrt[6]{3^2} = 3^{\frac{2}{6}} = 3^{\frac{1}{3}} = \sqrt[3]{3}69=632=362=331=33−813=−27×33=(−3)3×33=−333\sqrt[3]{-81} = \sqrt[3]{-27 \times 3} = \sqrt[3]{(-3)^3 \times 3} = -3\sqrt[3]{3}3−81=3−27×3=3(−3)3×3=−333193=1323=1323=193=339333=33273=333\sqrt[3]{\frac{1}{9}} = \sqrt[3]{\frac{1}{3^2}} = \frac{1}{\sqrt[3]{3^2}} = \frac{1}{\sqrt[3]{9}} = \frac{\sqrt[3]{3}}{\sqrt[3]{9}\sqrt[3]{3}} = \frac{\sqrt[3]{3}}{\sqrt[3]{27}} = \frac{\sqrt[3]{3}}{3}391=3321=3321=391=393333=32733=333与えられた式は次のようになります。5333−333+333=5333−9333+1333=(53−93+13)33=5−9+1333=−3333=−33\frac{5}{3} \sqrt[3]{3} - 3\sqrt[3]{3} + \frac{\sqrt[3]{3}}{3} = \frac{5}{3}\sqrt[3]{3} - \frac{9}{3}\sqrt[3]{3} + \frac{1}{3}\sqrt[3]{3} = (\frac{5}{3} - \frac{9}{3} + \frac{1}{3})\sqrt[3]{3} = \frac{5-9+1}{3}\sqrt[3]{3} = \frac{-3}{3}\sqrt[3]{3} = -\sqrt[3]{3}3533−333+333=3533−3933+3133=(35−39+31)33=35−9+133=3−333=−333. 最終的な答え−33-\sqrt[3]{3}−33