問題は、導関数の定義を用いて、以下の2つの関数を微分することです。 (1) $f(x) = x^2$ (2) $f(x) = \sqrt{x}$解析学微分導関数極限代数2025/5/131. 問題の内容問題は、導関数の定義を用いて、以下の2つの関数を微分することです。(1) f(x)=x2f(x) = x^2f(x)=x2(2) f(x)=xf(x) = \sqrt{x}f(x)=x2. 解き方の手順導関数の定義は、f′(x)=limh→0f(x+h)−f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}f′(x)=limh→0hf(x+h)−f(x)です。(1) f(x)=x2f(x) = x^2f(x)=x2の場合:f(x+h)=(x+h)2=x2+2xh+h2f(x+h) = (x+h)^2 = x^2 + 2xh + h^2f(x+h)=(x+h)2=x2+2xh+h2したがって、f′(x)=limh→0(x+h)2−x2h=limh→0x2+2xh+h2−x2h=limh→02xh+h2hf'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h}f′(x)=limh→0h(x+h)2−x2=limh→0hx2+2xh+h2−x2=limh→0h2xh+h2f′(x)=limh→0(2x+h)=2xf'(x) = \lim_{h \to 0} (2x + h) = 2xf′(x)=limh→0(2x+h)=2x(2) f(x)=xf(x) = \sqrt{x}f(x)=xの場合:f(x+h)=x+hf(x+h) = \sqrt{x+h}f(x+h)=x+hしたがって、f′(x)=limh→0x+h−xhf'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}f′(x)=limh→0hx+h−x分子を有理化するために、x+h+x\sqrt{x+h} + \sqrt{x}x+h+xを分子と分母に掛けます。f′(x)=limh→0(x+h−x)(x+h+x)h(x+h+x)=limh→0(x+h)−xh(x+h+x)=limh→0hh(x+h+x)f'(x) = \lim_{h \to 0} \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}f′(x)=limh→0h(x+h+x)(x+h−x)(x+h+x)=limh→0h(x+h+x)(x+h)−x=limh→0h(x+h+x)hf′(x)=limh→01x+h+x=1x+x=12xf'(x) = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}f′(x)=limh→0x+h+x1=x+x1=2x13. 最終的な答え(1) f(x)=x2f(x) = x^2f(x)=x2のとき、f′(x)=2xf'(x) = 2xf′(x)=2x(2) f(x)=xf(x) = \sqrt{x}f(x)=xのとき、f′(x)=12xf'(x) = \frac{1}{2\sqrt{x}}f′(x)=2x1