We are asked to evaluate the following limit: $Q = \lim_{x \to 0} \frac{1 - \cos x \cos 2x \cos 3x \dots \cos nx}{x^2}$.

AnalysisLimitsTrigonometrySmall Angle ApproximationSummation
2025/5/14

1. Problem Description

We are asked to evaluate the following limit:
Q=limx01cosxcos2xcos3xcosnxx2Q = \lim_{x \to 0} \frac{1 - \cos x \cos 2x \cos 3x \dots \cos nx}{x^2}.

2. Solution Steps

We can rewrite the numerator as:
1cosxcos2xcos3xcosnx=1(1(1cosx))cos2xcosnx1 - \cos x \cos 2x \cos 3x \dots \cos nx = 1 - (1 - (1 - \cos x)) \cos 2x \dots \cos nx
=1cos2xcos3xcosnx+(1cosx)cos2xcos3xcosnx= 1 - \cos 2x \cos 3x \dots \cos nx + (1 - \cos x)\cos 2x \cos 3x \dots \cos nx.
Then, let P=cosxcos2xcos3xcosnxP = \cos x \cos 2x \cos 3x \dots \cos nx. We can write 1P1 - P as
1P=1cosx+cosxcosxcos2x+cosxcos2xcosxcosnx1 - P = 1 - \cos x + \cos x - \cos x \cos 2x + \cos x \cos 2x - \dots - \cos x \dots \cos nx
=(1cosx)+cosx(1cos2x)+cosxcos2x(1cos3x)++cosxcos(n1)x(1cosnx)= (1 - \cos x) + \cos x (1 - \cos 2x) + \cos x \cos 2x (1 - \cos 3x) + \dots + \cos x \dots \cos(n-1)x(1 - \cos nx).
Using the small angle approximation for cosine, cosx1x22\cos x \approx 1 - \frac{x^2}{2} as x0x \to 0, we also have 1cosxx221 - \cos x \approx \frac{x^2}{2} as x0x \to 0.
When x0x \to 0, coskx1\cos kx \to 1 for any integer kk. Also, 1coskx(kx)22=k2x221 - \cos kx \approx \frac{(kx)^2}{2} = \frac{k^2 x^2}{2}.
Therefore, the numerator becomes:
1P=(1cosx)+cosx(1cos2x)+cosxcos2x(1cos3x)++cosxcos(n1)x(1cosnx)1 - P = (1 - \cos x) + \cos x (1 - \cos 2x) + \cos x \cos 2x (1 - \cos 3x) + \dots + \cos x \dots \cos(n-1)x(1 - \cos nx)
x22+1(2x)22+11(3x)22++111(nx)22\approx \frac{x^2}{2} + 1 \cdot \frac{(2x)^2}{2} + 1 \cdot 1 \cdot \frac{(3x)^2}{2} + \dots + 1 \cdot 1 \cdot \dots \cdot 1 \cdot \frac{(nx)^2}{2}
=x22+4x22+9x22++n2x22= \frac{x^2}{2} + \frac{4x^2}{2} + \frac{9x^2}{2} + \dots + \frac{n^2 x^2}{2}
=x22(1+4+9++n2)=x22k=1nk2=x22n(n+1)(2n+1)6= \frac{x^2}{2} (1 + 4 + 9 + \dots + n^2) = \frac{x^2}{2} \sum_{k=1}^n k^2 = \frac{x^2}{2} \frac{n(n+1)(2n+1)}{6}.
Q=limx0x22n(n+1)(2n+1)6x2=limx0n(n+1)(2n+1)12=n(n+1)(2n+1)12Q = \lim_{x \to 0} \frac{\frac{x^2}{2} \frac{n(n+1)(2n+1)}{6}}{x^2} = \lim_{x \to 0} \frac{n(n+1)(2n+1)}{12} = \frac{n(n+1)(2n+1)}{12}.

3. Final Answer

n(n+1)(2n+1)12\frac{n(n+1)(2n+1)}{12}

Related problems in "Analysis"

The function $f(x) = x^2$ is not injective when its domain is the set of all real numbers, but it is...

FunctionsInjective FunctionsDomain and RangeReal Numbers
2025/5/14

The image presents a set of math problems involving limits, probability, complex numbers, integrals,...

LimitsCalculusContinuityTrigonometric LimitsL'Hopital's RuleGrowth Rates
2025/5/14

The problem asks us to determine the volume of a sphere with radius $r$ using integration.

IntegrationVolume CalculationSphereCalculus
2025/5/13

We are given the functions $f$ and $g$ defined on the interval $[-1, 5]$ as follows: $f(x) = \begin{...

Definite IntegralsPiecewise FunctionsIntegration
2025/5/13

The problem asks to find the Fourier series representation of the function $f(x) = x$ on the interva...

Fourier SeriesCalculusIntegrationTrigonometric Functions
2025/5/13

The problem states that a function $f(x)$ is defined in an open interval $(-L, L)$ and has period $2...

Fourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/13

We are asked to construct the Fourier series for the function $f(x) = x$ on the interval $-\pi < x <...

Fourier SeriesIntegrationTrigonometric Functions
2025/5/13

We want to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi <...

Fourier SeriesIntegrationTrigonometric FunctionsCalculus
2025/5/13

The problem asks us to find the range of $\theta$ such that the infinite series $\sum_{n=1}^{\infty}...

Infinite SeriesConvergenceTrigonometryInequalities
2025/5/13

The problem asks to prove the formula for the Fourier sine series coefficient $b_n$ for a function $...

Fourier SeriesTrigonometric FunctionsOrthogonalityIntegration
2025/5/13