We can rewrite the numerator as:
1−cosxcos2xcos3x…cosnx=1−(1−(1−cosx))cos2x…cosnx =1−cos2xcos3x…cosnx+(1−cosx)cos2xcos3x…cosnx. Then, let P=cosxcos2xcos3x…cosnx. We can write 1−P as 1−P=1−cosx+cosx−cosxcos2x+cosxcos2x−⋯−cosx…cosnx =(1−cosx)+cosx(1−cos2x)+cosxcos2x(1−cos3x)+⋯+cosx…cos(n−1)x(1−cosnx). Using the small angle approximation for cosine, cosx≈1−2x2 as x→0, we also have 1−cosx≈2x2 as x→0. When x→0, coskx→1 for any integer k. Also, 1−coskx≈2(kx)2=2k2x2. Therefore, the numerator becomes:
1−P=(1−cosx)+cosx(1−cos2x)+cosxcos2x(1−cos3x)+⋯+cosx…cos(n−1)x(1−cosnx) ≈2x2+1⋅2(2x)2+1⋅1⋅2(3x)2+⋯+1⋅1⋅⋯⋅1⋅2(nx)2 =2x2+24x2+29x2+⋯+2n2x2 =2x2(1+4+9+⋯+n2)=2x2∑k=1nk2=2x26n(n+1)(2n+1). Q=limx→0x22x26n(n+1)(2n+1)=limx→012n(n+1)(2n+1)=12n(n+1)(2n+1).