$(x-2)^6$ を展開せよ。代数学二項定理多項式展開2025/5/141. 問題の内容(x−2)6(x-2)^6(x−2)6 を展開せよ。2. 解き方の手順二項定理を用いて展開します。二項定理は以下の式で表されます。(a+b)n=∑k=0n(nk)an−kbk(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k(a+b)n=∑k=0n(kn)an−kbkこの問題では、a=xa = xa=x, b=−2b = -2b=−2, n=6n = 6n=6 です。したがって、(x−2)6=∑k=06(6k)x6−k(−2)k(x-2)^6 = \sum_{k=0}^{6} \binom{6}{k} x^{6-k} (-2)^k(x−2)6=∑k=06(k6)x6−k(−2)k各項を計算します。k=0:(60)x6(−2)0=1⋅x6⋅1=x6k = 0: \binom{6}{0} x^6 (-2)^0 = 1 \cdot x^6 \cdot 1 = x^6k=0:(06)x6(−2)0=1⋅x6⋅1=x6k=1:(61)x5(−2)1=6⋅x5⋅(−2)=−12x5k = 1: \binom{6}{1} x^5 (-2)^1 = 6 \cdot x^5 \cdot (-2) = -12x^5k=1:(16)x5(−2)1=6⋅x5⋅(−2)=−12x5k=2:(62)x4(−2)2=15⋅x4⋅4=60x4k = 2: \binom{6}{2} x^4 (-2)^2 = 15 \cdot x^4 \cdot 4 = 60x^4k=2:(26)x4(−2)2=15⋅x4⋅4=60x4k=3:(63)x3(−2)3=20⋅x3⋅(−8)=−160x3k = 3: \binom{6}{3} x^3 (-2)^3 = 20 \cdot x^3 \cdot (-8) = -160x^3k=3:(36)x3(−2)3=20⋅x3⋅(−8)=−160x3k=4:(64)x2(−2)4=15⋅x2⋅16=240x2k = 4: \binom{6}{4} x^2 (-2)^4 = 15 \cdot x^2 \cdot 16 = 240x^2k=4:(46)x2(−2)4=15⋅x2⋅16=240x2k=5:(65)x1(−2)5=6⋅x⋅(−32)=−192xk = 5: \binom{6}{5} x^1 (-2)^5 = 6 \cdot x \cdot (-32) = -192xk=5:(56)x1(−2)5=6⋅x⋅(−32)=−192xk=6:(66)x0(−2)6=1⋅1⋅64=64k = 6: \binom{6}{6} x^0 (-2)^6 = 1 \cdot 1 \cdot 64 = 64k=6:(66)x0(−2)6=1⋅1⋅64=64したがって、(x−2)6=x6−12x5+60x4−160x3+240x2−192x+64(x-2)^6 = x^6 - 12x^5 + 60x^4 - 160x^3 + 240x^2 - 192x + 64(x−2)6=x6−12x5+60x4−160x3+240x2−192x+643. 最終的な答えx6−12x5+60x4−160x3+240x2−192x+64x^6 - 12x^5 + 60x^4 - 160x^3 + 240x^2 - 192x + 64x6−12x5+60x4−160x3+240x2−192x+64