与えられた式 $ab(a+b) + bc(b+c) + ca(c+a) + 3abc$ を展開し、整理して簡単にしてください。

代数学式の展開因数分解多項式
2025/5/14

1. 問題の内容

与えられた式 ab(a+b)+bc(b+c)+ca(c+a)+3abcab(a+b) + bc(b+c) + ca(c+a) + 3abc を展開し、整理して簡単にしてください。

2. 解き方の手順

まず、各項を展開します。
ab(a+b)=a2b+ab2ab(a+b) = a^2b + ab^2
bc(b+c)=b2c+bc2bc(b+c) = b^2c + bc^2
ca(c+a)=c2a+ca2ca(c+a) = c^2a + ca^2
次に、これらを元の式に代入します。
a2b+ab2+b2c+bc2+c2a+ca2+3abca^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2 + 3abc
ここで、因数分解の形に持っていくことを考えます。この式は (a+b)(b+c)(c+a) (a+b)(b+c)(c+a) を展開した形に似ていることに気づきます。(a+b)(b+c)(c+a)(a+b)(b+c)(c+a) を展開してみましょう。
(a+b)(b+c)=ab+ac+b2+bc(a+b)(b+c) = ab + ac + b^2 + bc
(ab+ac+b2+bc)(c+a)=abc+a2b+ac2+a2c+b2c+ab2+bc2+abc(ab + ac + b^2 + bc)(c+a) = abc + a^2b + ac^2 + a^2c + b^2c + ab^2 + bc^2 + abc
=a2b+ab2+b2c+bc2+c2a+ca2+2abc= a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2 + 2abc
したがって、
a2b+ab2+b2c+bc2+c2a+ca2+3abc=a2b+ab2+b2c+bc2+c2a+ca2+2abc+abca^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2 + 3abc = a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2 + 2abc + abc
=(a+b)(b+c)(c+a)+abc= (a+b)(b+c)(c+a) + abc

3. 最終的な答え

(a+b)(b+c)(c+a)+abc(a+b)(b+c)(c+a) + abc

「代数学」の関連問題

与えられた分数の分母を有理化し、式を簡単にします。問題の式は $\frac{1-\sqrt{3}}{2+\sqrt{3}}$ です。

分数の有理化平方根式の展開
2025/5/14

与えられた数式の値を計算します。 数式は $\frac{2-\sqrt{6}}{2+\sqrt{6}}$ です。

有理化平方根式の計算
2025/5/14

与えられた分数の分母を有理化する問題です。具体的には、$\frac{2}{\sqrt{7} - \sqrt{3}}$ の分母を有理化します。

分母の有理化平方根代数
2025/5/14

与えられた分数の分母を有理化し、簡略化された形にする問題です。 与えられた分数は $(\sqrt{5} + \sqrt{3}) / (\sqrt{5} - \sqrt{3})$ です。

分数有理化平方根計算
2025/5/14

与えられた問題は、分母に平方根を含む分数の有理化です。具体的には、$\frac{1}{\sqrt{5} + \sqrt{2}}$ を有理化する必要があります。

分数の有理化平方根計算
2025/5/14

与えられた連立一次方程式の解を求める問題です。 行列とベクトルの積の形で、$Ax=0$ と表されています。ここで、$A$ は3x5の行列、$x$ は5x1のベクトルです。 $A = \begin{bm...

線形代数連立一次方程式行列ベクトルの積簡約化
2025/5/14

与えられた行列とベクトルを使って、連立一次方程式の解を求めます。具体的には、以下の連立一次方程式の一般解を求める問題です。 $ \begin{bmatrix} 1 & -4 & 3 & 4 & -3 ...

線形代数連立一次方程式行列行簡約化一般解
2025/5/14

与えられた線形方程式系の解を求める問題です。行列とベクトルの積の形で表された同次連立一次方程式 $ \begin{bmatrix} 1 & -4 & 3 & 4 & -3 \\ 1 & -2 & 0 ...

線形代数連立一次方程式行列簡約化解の表現
2025/5/14

長さ40cmの針金を2つに切り、それぞれの針金で正方形を2つ作る。2つの正方形の面積の和を最小にするには、針金をどのように切れば良いか。また、その面積の和の最小値を求めよ。

二次関数最小値最適化
2025/5/14

問題は $(4\sqrt{6} + 3\sqrt{3})(4\sqrt{6} - 3\sqrt{3})$ を計算することです。

式の展開平方根計算
2025/5/14