あるコンビニエンスストアで商品を購入する客のうち、全体の60%が現金のみで支払い、全体の5%が現金のみで支払う学生である。現金のみで支払う客の中から無作為に1人を選び出すとき、その客が学生である確率を求める。

確率論・統計学確率条件付き確率
2025/5/14

1. 問題の内容

あるコンビニエンスストアで商品を購入する客のうち、全体の60%が現金のみで支払い、全体の5%が現金のみで支払う学生である。現金のみで支払う客の中から無作為に1人を選び出すとき、その客が学生である確率を求める。

2. 解き方の手順

事象を以下のように定義する。
* A: 客が現金のみで支払う
* B: 客が学生である
問題文より、
* P(A)=0.6P(A) = 0.6
* P(AB)=0.05P(A \cap B) = 0.05
求める確率は、P(BA)P(B|A) である。条件付き確率の定義より、
P(BA)=P(AB)P(A)P(B|A) = \frac{P(A \cap B)}{P(A)}
与えられた値を代入すると、
P(BA)=0.050.6=560=112P(B|A) = \frac{0.05}{0.6} = \frac{5}{60} = \frac{1}{12}

3. 最終的な答え

112\frac{1}{12}

「確率論・統計学」の関連問題

大小2つのサイコロを同時に投げるとき、大きいサイコロの目が小さいサイコロの目の2倍以上となる目の出方は何通りあるかを求める問題です。

確率サイコロ場合の数条件付き確率
2025/5/23

サイコロを2回投げたとき、出た目の数の和が5となる場合の数を求める問題です。

確率サイコロ場合の数組み合わせ
2025/5/23

サイコロを2回投げたとき、どちらの目も4以下となる出方は何通りあるかを求める問題です。

確率場合の数サイコロ
2025/5/23

2つのサイコロを投げたとき、小さい方の目の数をXとします。ただし、2つのサイコロの目が等しいときは、その目の数をXとします。 (a) 小さい方の目の数が2である確率 $P(X=2)$ を求めます。 (...

確率期待値サイコロ確率分布
2025/5/23

1から6までの目が出るサイコロを2つ同時に投げたとき、出た目の積が5の倍数になる確率を求める問題です。

確率サイコロ場合の数
2025/5/23

確率変数Xの確率密度関数が与えられており、(a)期待値E(X)と(b)分散V(X)を求める問題です。確率密度関数は、 $f(x) = \begin{cases} -\frac{3}{4}x^2 + \...

確率密度関数期待値分散積分
2025/5/23

1から6までの目がそれぞれ1/6の確率で出るサイコロを60回投げたとき、奇数の目が出る回数をXとします。 (a) 期待値 $E(X)$ を求めます。 (b) 分散 $V(X)$ を求めます。

期待値分散ベルヌーイ試行確率
2025/5/23

確率変数 $X$ の確率密度関数 $f(x)$ が与えられています。 $ f(x) = \begin{cases} -\frac{3}{4}x^2 + \frac{3}{2}x & (0 \le x ...

確率密度関数期待値分散積分
2025/5/23

確率変数 $X$ の確率密度関数 $f(x)$ が次のように与えられている。 $f(x) = \begin{cases} -\frac{3}{4}x^2 + \frac{3}{2}x & (0 \le...

確率密度関数期待値積分
2025/5/23

確率変数 $X$ の確率密度関数 $f(x)$ が与えられており、以下のようになっています。 $ f(x) = \begin{cases} -\frac{3}{4}x^2 + \frac{3}{2}x...

確率密度関数期待値分散積分
2025/5/23