2次方程式 $2x^2 - 3x + 5 = 0$ の解を判別式を用いて判別する。

代数学二次方程式判別式解の判別
2025/5/15

1. 問題の内容

2次方程式 2x23x+5=02x^2 - 3x + 5 = 0 の解を判別式を用いて判別する。

2. 解き方の手順

2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の判別式 DD は、
D=b24acD = b^2 - 4ac
で与えられます。
D>0D > 0 のとき、異なる2つの実数解を持つ。
D=0D = 0 のとき、重解(ただ1つの実数解)を持つ。
D<0D < 0 のとき、実数解を持たない(異なる2つの虚数解を持つ)。
与えられた2次方程式 2x23x+5=02x^2 - 3x + 5 = 0 において、a=2a = 2, b=3b = -3, c=5c = 5 です。
判別式 DD
D=(3)24(2)(5)=940=31D = (-3)^2 - 4(2)(5) = 9 - 40 = -31
となります。
D=31<0D = -31 < 0 なので、与えられた2次方程式は実数解を持たない。

3. 最終的な答え

実数解を持たない

「代数学」の関連問題

$\omega$ を $x^3 = 1$ の虚数解の一つとするとき、$(1+\omega^2)^3(2+\omega) + (1+\omega)^3(2+\omega^2)$ の値を求める問題です。

複素数三次方程式解の公式因数分解式の展開
2025/6/6

空欄を埋める問題です。 $a$ を1でない正の実数とするとき、$y = \log_a x$ で定められる関数を、$a$ を (1) とする (2) といいます。この関数の定義域は (3) 全体で、値域...

対数対数関数定義域値域
2025/6/6

$a$ を 1 でない実数、$x, y$ を正の実数、$p$ を実数とするとき、次の対数の性質のうち、正しくないものを全て選びます。 1. $\log_a a = 0$

対数対数の性質
2025/6/6

2つの方程式が与えられています。 1つ目の2次方程式 $x^2 + 2(a - \sqrt{3})x - 3\sqrt{3}a + 9 = 0$ が異なる2つの実数解を持つ条件と、2つ目の2次方程式 ...

二次方程式判別式不等式解の範囲
2025/6/6

与えられた4つの2次方程式を解く問題です。 (1) $x^2 + 2x - 2 = 0$ (2) $3x^2 - 4x - 2 = 0$ (3) $x^2 + 2\sqrt{3}x + 3 = 0$ ...

二次方程式解の公式平方根
2025/6/6

$a$ を1でない正の実数とするとき、$a^y = x$ を満たす実数 $y$ を、$a$ を何といい、$x$ の何というのか、また、$\log_a x$ の $x$ を何といい、それが正の実数である...

対数指数真数常用対数
2025/6/6

与えられた式 $-2x^3 - 6x^2y + 8xy^2$ を因数分解せよ。

因数分解多項式共通因数
2025/6/6

$a$ を1でない正の実数とするとき、$a^y = x$ を満たす実数 $y$ を、$a$ を (1) とする $x$ の (2) といい、$\log_a x$ と表します。また、このときの $x$ ...

対数指数定義域
2025/6/6

与えられた3つの2次方程式を解く問題です。 (1) $16x^2 = 25$ (2) $4x^2 - 1 = 0$ (3) $(2x+5)^2 - 7 = 0$

二次方程式平方根方程式の解法
2025/6/6

与えられた2つの式を因数分解します。 (1) $9a^3 - 16a$ (2) $x^3y + 2x^2y + xy$

因数分解多項式共通因数差の平方平方完成
2025/6/6