原点と直線 $3x - 4y - 5 = 0$ の距離を求める問題です。

幾何学距離点と直線の距離
2025/5/15

1. 問題の内容

原点と直線 3x4y5=03x - 4y - 5 = 0 の距離を求める問題です。

2. 解き方の手順

(x0,y0)(x_0, y_0) と直線 ax+by+c=0ax + by + c = 0 の距離 dd は、次の式で求められます。
d=ax0+by0+ca2+b2d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}
この問題では、点 (x0,y0)(x_0, y_0) が原点 (0,0)(0, 0) であり、直線が 3x4y5=03x - 4y - 5 = 0 なので、a=3a = 3, b=4b = -4, c=5c = -5 となります。
これらの値を上記の式に代入します。
d=3(0)4(0)532+(4)2d = \frac{|3(0) - 4(0) - 5|}{\sqrt{3^2 + (-4)^2}}
d=59+16d = \frac{|-5|}{\sqrt{9 + 16}}
d=525d = \frac{5}{\sqrt{25}}
d=55d = \frac{5}{5}
d=1d = 1

3. 最終的な答え

1

「幾何学」の関連問題

外接円の半径が3である$\triangle ABC$を考える。点Aから直線BCに引いた垂線と直線BCとの交点をDとする。 (1) $AB = 5$, $AC = 4$のとき、$\sin \angle ...

三角比正弦定理三角形最大値垂線
2025/6/7

$x$ を 2 より大きい定数とする。$\triangle ABC$ において、$AB = x-1$, $BC = x$, $CA = x+1$ であり、$\cos B = \frac{2}{7}$ ...

余弦定理三角形内接円ヘロンの公式
2025/6/7

異なる3直線 $x+y=1$, $3x+4y=1$, $ax+by=1$ が1点で交わるならば、3点 $(1,1)$, $(3,4)$, $(a,b)$ が一直線上にあることを証明する。

直線交点証明一次方程式
2025/6/7

3つの直線 $x+3y-2=0$, $x+y=0$, $ax-2y+4=0$ が三角形を作らないときの定数 $a$ の値を求める。

直線三角形平行交点方程式
2025/6/7

円Kに関する問題で、船が見えなくなる時間と角度の情報から、線分の長さや三角形の面積を求め、最終的に$x+y$の値を計算する問題です。$AC = x$, $AD = y$とします。

三角比余弦定理面積図形
2025/6/7

点Aから直線 $l$ に下ろした垂線の足をHとする。AH = $\frac{12}{5}$ である。点BからHまでの船の移動時間を $\frac{9}{5}$ 分とする。$\tan{\angle BA...

三角比直角三角形tan距離速さ
2025/6/7

ひし形ABCDにおいて、AB = 10、AC = 16とする。対角線の交点をOとする。 (1) sin∠BACの値を求め、△ABCの外接円の半径R1を求める。 (2) ひし形を線分BDで折り曲げ、∠A...

ひし形三角比正弦定理余弦定理外接円
2025/6/7

問題は以下の2つです。 * 正四面体を、ある面を下にして置き、1つの辺を軸として3回転がす。2回目以降は直前にあった場所を通らないようにするとき、転がし方の総数と、3回転がした後の正四面体の位置の...

正四面体組み合わせ場合の数数え上げ重複組合せ
2025/6/7

三角形ABCの外心O、内心I、外接円の半径R、内接円の半径rについて、OとIが一致しない場合に、R, rとOIの関係を調べる問題です。空欄を埋める必要があります。

幾何三角形外心内心外接円内接円オイラーの定理
2025/6/7

三角形ABCの外心O、内心I、外接円の半径R、内接円の半径rについて、OとIが一致しない場合にR, r, OIの関係を調べる問題です。いくつかの空欄を、指定された解答群から選択するか、数字を答える必要...

幾何三角形外心内心外接円内接円オイラーの定理
2025/6/7