2つの二次方程式を解く問題です。 (7) $x^2 + x - 1 = 0$ (8) $3x^2 - 8x + 2 = 0$

代数学二次方程式解の公式代数
2025/3/22

1. 問題の内容

2つの二次方程式を解く問題です。
(7) x2+x1=0x^2 + x - 1 = 0
(8) 3x28x+2=03x^2 - 8x + 2 = 0

2. 解き方の手順

二次方程式の解の公式を利用します。
二次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解は、
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} で与えられます。
(7) の場合、a=1a = 1, b=1b = 1, c=1c = -1 なので、
x=1±124(1)(1)2(1)x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)}
x=1±1+42x = \frac{-1 \pm \sqrt{1 + 4}}{2}
x=1±52x = \frac{-1 \pm \sqrt{5}}{2}
(8) の場合、a=3a = 3, b=8b = -8, c=2c = 2 なので、
x=(8)±(8)24(3)(2)2(3)x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(3)(2)}}{2(3)}
x=8±64246x = \frac{8 \pm \sqrt{64 - 24}}{6}
x=8±406x = \frac{8 \pm \sqrt{40}}{6}
x=8±2106x = \frac{8 \pm 2\sqrt{10}}{6}
x=4±103x = \frac{4 \pm \sqrt{10}}{3}

3. 最終的な答え

(7) x=1±52x = \frac{-1 \pm \sqrt{5}}{2}
(8) x=4±103x = \frac{4 \pm \sqrt{10}}{3}

「代数学」の関連問題

式 $(2x^2 - 3xy - y^2)(3x^2 - 2xy + y^2)$ を展開したとき、(1) $x^3y$ の項の係数と (2) $x^2y^2$ の項の係数をそれぞれ求めます。

多項式の展開係数代数式
2025/4/8

2次関数 $y = 2x^2 - 4x + a$ において、$0 \leqq x \leqq 3$ の範囲で最小値が1であるとき、$a$ の値と最大値を求めます。

二次関数最大値最小値平方完成定義域
2025/4/8

(1) $3^{25}$ は何桁の整数であるかを求める問題。ただし、$\log_{10}3 = 0.4771$ とする。 (2) $(\frac{1}{2})^{30}$ を小数で表すと、小数第何位に...

対数桁数小数
2025/4/8

関数 $y = -\frac{4}{x}$ のグラフとして正しいものを、選択肢のグラフ①~④の中から1つ選ぶ問題です。

関数反比例グラフ
2025/4/8

2次関数 $y = x^2 - 4x + a$ のグラフの頂点が、直線 $y = -x - 4$ 上にあるとき、定数 $a$ の値を求める問題です。

二次関数頂点平方完成グラフ
2025/4/8

205番の問題は対数の計算問題です。 (1) $4\log_5{\sqrt{5}} - \frac{1}{3}\log_5{2} + \log_{125}{250}$ の値を求めます。 (2) $(\...

対数対数計算対数の大小比較底の変換
2025/4/8

2組の連立方程式を解く問題です。 * 26(1): $\begin{cases} 5x - 3y = 7 \\ 7x - 4y = 9 \end{cases}$ * 26(2): $\begi...

連立方程式線形代数代入法加減法
2025/4/8

反比例のグラフ $y = \frac{12}{x}$ を、選択肢のグラフ①~④の中から選びなさい。

反比例グラフ関数
2025/4/8

実数全体を全体集合とし、部分集合 A を $A = \{x \mid x < -2, 7 \le x\}$、B を $B = \{x \mid x < 3\}$ とする。このとき、集合 $\overl...

集合補集合不等式整数の個数
2025/4/8

与えられた式 $(a-b)^2 - 2(a-b) + 1$ を因数分解する問題です。

因数分解式の展開完全平方式
2025/4/8