2次方程式 $x^2 + 3(a-2)x + 5a - 7 = 0$ の解の一つが $-3$ であるとき、$a$ の値を求め、さらにこの方程式の他の解を求めよ。

代数学二次方程式解の公式因数分解
2025/3/22

1. 問題の内容

2次方程式 x2+3(a2)x+5a7=0x^2 + 3(a-2)x + 5a - 7 = 0 の解の一つが 3-3 であるとき、aa の値を求め、さらにこの方程式の他の解を求めよ。

2. 解き方の手順

(1) x=3x=-3 が解であるので、方程式に代入して aa の値を求める。
(3)2+3(a2)(3)+5a7=0(-3)^2 + 3(a-2)(-3) + 5a - 7 = 0
99(a2)+5a7=09 - 9(a-2) + 5a - 7 = 0
99a+18+5a7=09 - 9a + 18 + 5a - 7 = 0
4a+20=0-4a + 20 = 0
4a=204a = 20
a=5a = 5
(2) 求めた aa の値を方程式に代入して、他の解を求める。
x2+3(52)x+5(5)7=0x^2 + 3(5-2)x + 5(5) - 7 = 0
x2+9x+18=0x^2 + 9x + 18 = 0
(x+3)(x+6)=0(x+3)(x+6) = 0
x=3,6x = -3, -6

3. 最終的な答え

a=5a = 5
他の解は 6-6

「代数学」の関連問題

与えられた式 $x^2 + xy + x + 2y - 2$ を因数分解します。

因数分解多項式
2025/5/14

与えられた5つの式をそれぞれ因数分解する問題です。 (1) $3x^3 + 4x$ (2) $x^2 + xy$ (3) $2xy - 2y$ (4) $8x^3 - 12x^2y$ (5) $9ab...

因数分解多項式
2025/5/14

連立不等式 $ \begin{cases} 5x - 8 \ge 7x - 2 \\ 2x + a \le 3x + 9 \end{cases} $ の解が $x = -3$ となるような $a$ の...

連立不等式不等式一次不等式解の範囲
2025/5/14

等比数列 $\{2 \cdot (\frac{3t}{4})^{n-1}\}$ が収束するような $t$ の値の範囲を求め、そのときの極限値を求める問題です。

数列等比数列極限収束不等式
2025/5/14

(1) $a > 0$ のとき、$a + \frac{36}{a}$ の最小値を求めよ。 (2) $x > 0$, $y > 0$ のとき、$(4x + 3y)(\frac{4}{x} + \frac...

相加相乗平均不等式最小値数式展開
2025/5/14

与えられた4つの数式について、それぞれ計算(乗算または除算)を行い、式を簡略化します。 (1) $\frac{x^2 - 4}{x^2 - 3x} \times \frac{x+2}{x}$ (2) ...

式の計算因数分解分数式約分多項式
2025/5/14

問題は2つあります。 (1) $a:b:c = 2:3:4$のとき、$\frac{ab+bc+ca}{a^2+b^2+c^2}$ の値を求めよ。 (2) $a:b:c = 2:3:4$ かつ $3a+...

比例式方程式
2025/5/14

(1) $(x-y+3)(x-y-3)$ を展開しなさい。 (2) $(x^2+x+1)(x^2-x+1)$ を展開しなさい。

展開多項式
2025/5/14

$a = \sqrt{6} + \sqrt{3}$, $b = \sqrt{6} - \sqrt{3}$ のとき、以下の値を求めます。 (1) $a+b$ と $ab$ (2) $a^2+b^2$ と...

式の計算平方根展開
2025/5/14

(1) $\frac{x^2-4}{x^2-3x} \times \frac{x}{x+2}$ を計算する。 (3) $\frac{x^2+3x}{x^2-3x} \div \frac{x-2}{x^...

分数式因数分解式の計算
2025/5/14