$x = \rho \cos \phi$, $y = \rho \sin \phi$ のとき、 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \phi^2}$ を示せ。

解析学偏微分連鎖律座標変換ラプラシアン
2025/5/15

1. 問題の内容

x=ρcosϕx = \rho \cos \phi, y=ρsinϕy = \rho \sin \phi のとき、
2ux2+2uy2=2uρ2+1ρuρ+1ρ22uϕ2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \phi^2}
を示せ。

2. 解き方の手順

まず、偏微分を計算するために必要な関係式を求める。
ρx=xρ=cosϕ\frac{\partial \rho}{\partial x} = \frac{x}{\rho} = \cos \phi
ρy=yρ=sinϕ\frac{\partial \rho}{\partial y} = \frac{y}{\rho} = \sin \phi
ϕx=yρ2=sinϕρ\frac{\partial \phi}{\partial x} = -\frac{y}{\rho^2} = -\frac{\sin \phi}{\rho}
ϕy=xρ2=cosϕρ\frac{\partial \phi}{\partial y} = \frac{x}{\rho^2} = \frac{\cos \phi}{\rho}
連鎖律を用いて、ux\frac{\partial u}{\partial x}uy\frac{\partial u}{\partial y} を計算する。
ux=uρρx+uϕϕx=uρcosϕuϕsinϕρ\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial u}{\partial \phi} \frac{\partial \phi}{\partial x} = \frac{\partial u}{\partial \rho} \cos \phi - \frac{\partial u}{\partial \phi} \frac{\sin \phi}{\rho}
uy=uρρy+uϕϕy=uρsinϕ+uϕcosϕρ\frac{\partial u}{\partial y} = \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial u}{\partial \phi} \frac{\partial \phi}{\partial y} = \frac{\partial u}{\partial \rho} \sin \phi + \frac{\partial u}{\partial \phi} \frac{\cos \phi}{\rho}
次に、2ux2\frac{\partial^2 u}{\partial x^2}2uy2\frac{\partial^2 u}{\partial y^2} を計算する。
2ux2=x(ux)=x(uρcosϕuϕsinϕρ)\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} (\frac{\partial u}{\partial x}) = \frac{\partial}{\partial x} (\frac{\partial u}{\partial \rho} \cos \phi - \frac{\partial u}{\partial \phi} \frac{\sin \phi}{\rho})
=(2uρ2ρx+2uϕρϕx)cosϕ+uρ(sinϕ)ϕx(2uρϕρx+2uϕ2ϕx)sinϕρuϕ(sinϕ)(1ρ2)ρxuϕx(sinϕρ)= (\frac{\partial^2 u}{\partial \rho^2} \frac{\partial \rho}{\partial x} + \frac{\partial^2 u}{\partial \phi \partial \rho} \frac{\partial \phi}{\partial x}) \cos \phi + \frac{\partial u}{\partial \rho} (-\sin \phi) \frac{\partial \phi}{\partial x} - (\frac{\partial^2 u}{\partial \rho \partial \phi} \frac{\partial \rho}{\partial x} + \frac{\partial^2 u}{\partial \phi^2} \frac{\partial \phi}{\partial x}) \frac{\sin \phi}{\rho} - \frac{\partial u}{\partial \phi} (-\sin \phi) (-\frac{1}{\rho^2}) \frac{\partial \rho}{\partial x} - \frac{\partial u}{\partial \phi} \frac{\partial}{\partial x} (\frac{\sin \phi}{\rho})
ここで、x(sinϕρ)=cosϕρϕxsinϕρ2ρx=cosϕρ(sinϕρ)sinϕρ2cosϕ=2sinϕcosϕρ2\frac{\partial}{\partial x} (\frac{\sin \phi}{\rho}) = \frac{\cos \phi}{\rho} \frac{\partial \phi}{\partial x} - \frac{\sin \phi}{\rho^2} \frac{\partial \rho}{\partial x} = \frac{\cos \phi}{\rho} (-\frac{\sin \phi}{\rho}) - \frac{\sin \phi}{\rho^2} \cos \phi = -\frac{2\sin\phi\cos\phi}{\rho^2}.
2ux2=2uρ2cos2ϕ2uϕρsinϕcosϕρuρsin2ϕρ2uρϕsinϕcosϕρ+2uϕ2sin2ϕρ2uϕsinϕcosϕρ2+uϕ(2sinϕcosϕρ2)\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial \rho^2} \cos^2 \phi - \frac{\partial^2 u}{\partial \phi \partial \rho} \frac{\sin \phi \cos \phi}{\rho} - \frac{\partial u}{\partial \rho} \frac{\sin^2 \phi}{\rho} - \frac{\partial^2 u}{\partial \rho \partial \phi} \frac{\sin \phi \cos \phi}{\rho} + \frac{\partial^2 u}{\partial \phi^2} \frac{\sin^2 \phi}{\rho^2} - \frac{\partial u}{\partial \phi} \frac{\sin \phi \cos \phi}{\rho^2} + \frac{\partial u}{\partial \phi} (\frac{2 \sin\phi\cos\phi}{\rho^2})
同様に、
2uy2=2uρ2sin2ϕ+2uϕρsinϕcosϕρ+uρcos2ϕρ+2uρϕsinϕcosϕρ+2uϕ2cos2ϕρ2uϕsinϕcosϕρ2uϕ(2sinϕcosϕρ2)\frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial \rho^2} \sin^2 \phi + \frac{\partial^2 u}{\partial \phi \partial \rho} \frac{\sin \phi \cos \phi}{\rho} + \frac{\partial u}{\partial \rho} \frac{\cos^2 \phi}{\rho} + \frac{\partial^2 u}{\partial \rho \partial \phi} \frac{\sin \phi \cos \phi}{\rho} + \frac{\partial^2 u}{\partial \phi^2} \frac{\cos^2 \phi}{\rho^2} - \frac{\partial u}{\partial \phi} \frac{\sin \phi \cos \phi}{\rho^2} - \frac{\partial u}{\partial \phi} (\frac{2 \sin\phi\cos\phi}{\rho^2})
2ux2+2uy2=2uρ2(cos2ϕ+sin2ϕ)+uρcos2ϕ+sin2ϕρ+2uϕ2sin2ϕ+cos2ϕρ2=2uρ2+1ρuρ+1ρ22uϕ2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial \rho^2} (\cos^2 \phi + \sin^2 \phi) + \frac{\partial u}{\partial \rho} \frac{\cos^2 \phi + \sin^2 \phi}{\rho} + \frac{\partial^2 u}{\partial \phi^2} \frac{\sin^2 \phi + \cos^2 \phi}{\rho^2} = \frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \phi^2}

3. 最終的な答え

2ux2+2uy2=2uρ2+1ρuρ+1ρ22uϕ2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \phi^2}

「解析学」の関連問題

与えられた積分 $\int \frac{dx}{x^2 - 9}$ を計算します。

積分部分分数分解対数関数
2025/5/15

$x, y, z$ の間に関数関係 $f(x, y, z) = 0$ があるとき、次の式が成り立つことを示す問題です。 $$ \left( \frac{\partial x}{\partial y} ...

偏微分連鎖律陰関数
2025/5/15

$x$, $y$, $z$ の間に函数関係があるとき、すなわち $f(x, y, z) = 0$ のとき、 $$ \left( \frac{\partial x}{\partial y} \right...

偏微分多変数函数偏微分方程式
2025/5/15

関数 $u(x, t) = f(x+at) + g(x-at)$ が与えられています。ここで、$f(x)$ と $g(x)$ は任意の関数です。この関数 $u(x, t)$ が偏微分方程式 $\fra...

偏微分方程式波動方程式偏微分微分
2025/5/15

$\cos^{-1} (\cos \frac{7}{6} \pi) = \frac{A}{6} \pi$ を満たす $A$ の値を求めよ。

逆三角関数三角関数cos角度
2025/5/15

$\arcsin x - \arccos x = \arcsin \frac{1}{2}$ を満たす $x$ を求める。ここで$\arcsin$は逆正弦関数、$\arccos$は逆余弦関数を表す。

逆三角関数方程式三角関数
2025/5/15

$\tan^{-1}x = \sin^{-1}\frac{1}{\sqrt{2}}$ を満たす $x$ の値を求める問題です。

逆三角関数tan⁻¹sin⁻¹三角関数方程式
2025/5/15

$\cos^{-1} (\cos \frac{7}{6} \pi) = \frac{A}{6} \pi$ を満たす $A$ を求める問題です。

逆三角関数三角関数cos
2025/5/15

$\lim_{x \to 0} \frac{\sin^{-1}(2x)}{\tan(3x)}$ の極限値を求める。

極限ロピタルの定理逆三角関数三角関数
2025/5/15

与えられた2つの三角関数の最大値と最小値を求める問題です。 (1) $y = \sin x - \cos x$ (2) $y = \sqrt{6} \sin x - \sqrt{2} \cos x$

三角関数三角関数の合成最大値最小値
2025/5/15