$x + y = 1$ かつ $xy = 2$ のとき、$x^3 + y^3$, $x^4 + y^4$, $x^5 + y^5$ の値をそれぞれ求める。代数学多項式式の計算展開因数分解2025/5/161. 問題の内容x+y=1x + y = 1x+y=1 かつ xy=2xy = 2xy=2 のとき、x3+y3x^3 + y^3x3+y3, x4+y4x^4 + y^4x4+y4, x5+y5x^5 + y^5x5+y5 の値をそれぞれ求める。2. 解き方の手順(1) x3+y3x^3 + y^3x3+y3 を求める。和の3乗の公式より、(x+y)3=x3+3x2y+3xy2+y3(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3(x+y)3=x3+3x2y+3xy2+y3x3+y3=(x+y)3−3x2y−3xy2x^3 + y^3 = (x + y)^3 - 3x^2y - 3xy^2x3+y3=(x+y)3−3x2y−3xy2x3+y3=(x+y)3−3xy(x+y)x^3 + y^3 = (x + y)^3 - 3xy(x + y)x3+y3=(x+y)3−3xy(x+y)x+y=1x + y = 1x+y=1, xy=2xy = 2xy=2 を代入して、x3+y3=13−3⋅2⋅1x^3 + y^3 = 1^3 - 3 \cdot 2 \cdot 1x3+y3=13−3⋅2⋅1x3+y3=1−6=−5x^3 + y^3 = 1 - 6 = -5x3+y3=1−6=−5(2) x4+y4x^4 + y^4x4+y4 を求める。(x2+y2)2=x4+2x2y2+y4(x^2 + y^2)^2 = x^4 + 2x^2y^2 + y^4(x2+y2)2=x4+2x2y2+y4x4+y4=(x2+y2)2−2x2y2x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2x4+y4=(x2+y2)2−2x2y2x4+y4=(x2+y2)2−2(xy)2x^4 + y^4 = (x^2 + y^2)^2 - 2(xy)^2x4+y4=(x2+y2)2−2(xy)2x2+y2=(x+y)2−2xyx^2 + y^2 = (x + y)^2 - 2xyx2+y2=(x+y)2−2xyx2+y2=12−2⋅2=1−4=−3x^2 + y^2 = 1^2 - 2 \cdot 2 = 1 - 4 = -3x2+y2=12−2⋅2=1−4=−3x4+y4=(−3)2−2⋅22x^4 + y^4 = (-3)^2 - 2 \cdot 2^2x4+y4=(−3)2−2⋅22x4+y4=9−2⋅4=9−8=1x^4 + y^4 = 9 - 2 \cdot 4 = 9 - 8 = 1x4+y4=9−2⋅4=9−8=1(3) x5+y5x^5 + y^5x5+y5 を求める。x5+y5=(x2+y2)(x3+y3)−x2y3−x3y2x^5 + y^5 = (x^2 + y^2)(x^3 + y^3) - x^2y^3 - x^3y^2x5+y5=(x2+y2)(x3+y3)−x2y3−x3y2x5+y5=(x2+y2)(x3+y3)−x2y2(y+x)x^5 + y^5 = (x^2 + y^2)(x^3 + y^3) - x^2y^2(y + x)x5+y5=(x2+y2)(x3+y3)−x2y2(y+x)x5+y5=(x2+y2)(x3+y3)−(xy)2(x+y)x^5 + y^5 = (x^2 + y^2)(x^3 + y^3) - (xy)^2(x + y)x5+y5=(x2+y2)(x3+y3)−(xy)2(x+y)x5+y5=(−3)(−5)−(2)2(1)x^5 + y^5 = (-3)(-5) - (2)^2(1)x5+y5=(−3)(−5)−(2)2(1)x5+y5=15−4=11x^5 + y^5 = 15 - 4 = 11x5+y5=15−4=113. 最終的な答え(1) x3+y3=−5x^3 + y^3 = -5x3+y3=−5(2) x4+y4=1x^4 + y^4 = 1x4+y4=1(3) x5+y5=11x^5 + y^5 = 11x5+y5=11