問題は、3次式 $x^3 + 64$ を因数分解することです。

代数学因数分解3次式多項式
2025/5/16

1. 問題の内容

問題は、3次式 x3+64x^3 + 64 を因数分解することです。

2. 解き方の手順

まず、x3+64x^3 + 64a3+b3a^3 + b^3 の形に書き換えます。
64=4364 = 4^3 なので、x3+64=x3+43x^3 + 64 = x^3 + 4^3 となります。
次に、a3+b3a^3 + b^3 の因数分解の公式 a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2) を適用します。
この問題では、a=xa = xb=4b = 4 です。
したがって、x3+43=(x+4)(x2x4+42)x^3 + 4^3 = (x + 4)(x^2 - x \cdot 4 + 4^2) となります。
これを整理すると、
x3+64=(x+4)(x24x+16)x^3 + 64 = (x + 4)(x^2 - 4x + 16) となります。

3. 最終的な答え

(x+4)(x24x+16)(x + 4)(x^2 - 4x + 16)

「代数学」の関連問題

数列 $\{a_n\}$ が、初項 $a_1 = 3$ と漸化式 $a_{n+1} = 3a_n - 2$ ($n = 1, 2, 3, \dots$) によって定義されている。この数列の一般項 $a...

数列漸化式等比数列一般項
2025/5/16

数列 $\{a_n\}$ が、初項 $a_1 = 2$ と漸化式 $a_{n+1} = a_n + n + 2$ ($n=1, 2, 3, \dots$) によって定められるとき、この数列の一般項 $...

数列漸化式一般項階差数列
2025/5/16

与えられた関数 $y = -\frac{3}{x+1} - 2$ について考察することを目的としています。この関数は双曲線であり、漸近線やグラフの形状を理解することが重要です。

双曲線関数のグラフ漸近線分数関数
2025/5/16

与えられた3x3の行列が正則であるかどうかを、掃き出し法を使って判定する問題です。行列は以下の通りです。 $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 2 \\ 5 & ...

線形代数行列正則掃き出し法行列式
2025/5/16

与えられた3x3行列が正則かどうかを判定する問題です。 行列は以下の通りです。 $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 2 \\ 5 & 7 & 3 \end{pm...

線形代数行列正則行列式
2025/5/16

与えられた行列が正則かどうかを調べる問題です。行列は以下の通りです。 $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 2 \\ 5 & 7 & 3 \end{pmatrix...

線形代数行列正則行列式
2025/5/16

与えられた行列 $A = \begin{pmatrix} 1 & 2 & -1 \\ -1 & -1 & 2 \\ 2 & -1 & 1 \end{pmatrix}$ の逆行列を、はき出し法(掃き出し...

行列逆行列線形代数掃き出し法
2025/5/16

与えられた行列の逆行列を求める問題です。与えられた行列を $A$ とすると、 $A = \begin{pmatrix} 1 & 2 & -1 \\ -1 & -1 & 2 \\ 2 & -1 & 1 ...

線形代数行列逆行列行列式余因子行列
2025/5/16

与えられた行列 $A = \begin{pmatrix} 1 & 2 & -1 \\ -1 & -1 & 2 \\ 2 & -1 & 1 \end{pmatrix}$ の逆行列 $A^{-1}$ を求...

線形代数行列逆行列行列式余因子行列転置行列
2025/5/16

問題は、$125x^3 - y^3$を因数分解することです。

因数分解差の立方多項式
2025/5/16