数列 $\{a_n\}$ が、初項 $a_1 = 2$ と漸化式 $a_{n+1} = a_n + n + 2$ ($n=1, 2, 3, \dots$) によって定められるとき、この数列の一般項 $a_n$ を求める問題です。
2025/5/16
1. 問題の内容
数列 が、初項 と漸化式 () によって定められるとき、この数列の一般項 を求める問題です。
2. 解き方の手順
漸化式 から、 であることがわかります。
これは、数列 の階差数列が であることを意味します。
したがって、 のとき、
のとき、 となり、これは与えられた初項 と一致します。
したがって、 に対して、一般項は で与えられます。