数列 $\{a_n\}$ の一般項が与えられたとき、初項から第5項まで、つまり $a_1, a_2, a_3, a_4, a_5$ をそれぞれ求める問題です。代数学数列一般項計算2025/5/171. 問題の内容数列 {an}\{a_n\}{an} の一般項が与えられたとき、初項から第5項まで、つまり a1,a2,a3,a4,a5a_1, a_2, a_3, a_4, a_5a1,a2,a3,a4,a5 をそれぞれ求める問題です。2. 解き方の手順一般項の式に n=1,2,3,4,5n = 1, 2, 3, 4, 5n=1,2,3,4,5 をそれぞれ代入して計算します。(1) an=3n−1a_n = 3n - 1an=3n−1 の場合:* a1=3(1)−1=3−1=2a_1 = 3(1) - 1 = 3 - 1 = 2a1=3(1)−1=3−1=2* a2=3(2)−1=6−1=5a_2 = 3(2) - 1 = 6 - 1 = 5a2=3(2)−1=6−1=5* a3=3(3)−1=9−1=8a_3 = 3(3) - 1 = 9 - 1 = 8a3=3(3)−1=9−1=8* a4=3(4)−1=12−1=11a_4 = 3(4) - 1 = 12 - 1 = 11a4=3(4)−1=12−1=11* a5=3(5)−1=15−1=14a_5 = 3(5) - 1 = 15 - 1 = 14a5=3(5)−1=15−1=14(2) an=n(2n−1)a_n = n(2n - 1)an=n(2n−1) の場合:* a1=1(2(1)−1)=1(2−1)=1(1)=1a_1 = 1(2(1) - 1) = 1(2 - 1) = 1(1) = 1a1=1(2(1)−1)=1(2−1)=1(1)=1* a2=2(2(2)−1)=2(4−1)=2(3)=6a_2 = 2(2(2) - 1) = 2(4 - 1) = 2(3) = 6a2=2(2(2)−1)=2(4−1)=2(3)=6* a3=3(2(3)−1)=3(6−1)=3(5)=15a_3 = 3(2(3) - 1) = 3(6 - 1) = 3(5) = 15a3=3(2(3)−1)=3(6−1)=3(5)=15* a4=4(2(4)−1)=4(8−1)=4(7)=28a_4 = 4(2(4) - 1) = 4(8 - 1) = 4(7) = 28a4=4(2(4)−1)=4(8−1)=4(7)=28* a5=5(2(5)−1)=5(10−1)=5(9)=45a_5 = 5(2(5) - 1) = 5(10 - 1) = 5(9) = 45a5=5(2(5)−1)=5(10−1)=5(9)=45(3) an=n2na_n = \frac{n}{2^n}an=2nn の場合:* a1=121=12a_1 = \frac{1}{2^1} = \frac{1}{2}a1=211=21* a2=222=24=12a_2 = \frac{2}{2^2} = \frac{2}{4} = \frac{1}{2}a2=222=42=21* a3=323=38a_3 = \frac{3}{2^3} = \frac{3}{8}a3=233=83* a4=424=416=14a_4 = \frac{4}{2^4} = \frac{4}{16} = \frac{1}{4}a4=244=164=41* a5=525=532a_5 = \frac{5}{2^5} = \frac{5}{32}a5=255=3253. 最終的な答え(1) a1=2,a2=5,a3=8,a4=11,a5=14a_1 = 2, a_2 = 5, a_3 = 8, a_4 = 11, a_5 = 14a1=2,a2=5,a3=8,a4=11,a5=14(2) a1=1,a2=6,a3=15,a4=28,a5=45a_1 = 1, a_2 = 6, a_3 = 15, a_4 = 28, a_5 = 45a1=1,a2=6,a3=15,a4=28,a5=45(3) a1=12,a2=12,a3=38,a4=14,a5=532a_1 = \frac{1}{2}, a_2 = \frac{1}{2}, a_3 = \frac{3}{8}, a_4 = \frac{1}{4}, a_5 = \frac{5}{32}a1=21,a2=21,a3=83,a4=41,a5=325