問題は、与えられた3つの範囲のうち、$3$ が含まれるのはどれかを選ぶ問題です。選択肢は以下の3つです。 * $a \leq 3$ * $a < 3$ * $a > 3$

代数学不等式範囲集合
2025/5/17

1. 問題の内容

問題は、与えられた3つの範囲のうち、33 が含まれるのはどれかを選ぶ問題です。選択肢は以下の3つです。
* a3a \leq 3
* a<3a < 3
* a>3a > 3

2. 解き方の手順

* a3a \leq 3 は、aa33 以下であることを意味します。これは、a=3a = 3 を含むので、33 はこの範囲に含まれます。
* a<3a < 3 は、aa33 より小さいことを意味します。これは、a=3a = 3 を含まないので、33 はこの範囲に含まれません。
* a>3a > 3 は、aa33 より大きいことを意味します。これは、a=3a = 3 を含まないので、33 はこの範囲に含まれません。

3. 最終的な答え

33 が含まれる範囲は、a3a \leq 3 です。

「代数学」の関連問題

関数 $y = f(x) = x^2 - (2a - 3)x - 2a - 2$ について、区間 $-2 \le x \le 3$ における最大値と最小値を、$a$ の値によって場合分けして求める問題...

二次関数最大値最小値場合分け平方完成
2025/5/17

$y$ は $x$ に反比例しており、$x=-2$ のとき $y=5$ である。このとき、$y$ を $x$ の式で表す問題を解く。

反比例比例定数関数
2025/5/17

与えられた式 $(x+2)(x+3)(x-2)(x-3)$ を展開して、最も簡単な形に整理する。

式の展開多項式因数分解
2025/5/17

$\frac{a-b}{2} + \frac{2a+b}{3}$ を計算し、できる限り簡略化してください。

分数式の計算文字式計算
2025/5/17

与えられた式 $(x+y)(x+y-z)$ を展開せよ。

式の展開多項式
2025/5/17

与えられた式 $(x+y+z)(x-y+z)(x+y-z)(x-y-z)$ を展開し、簡略化せよ。

多項式の展開因数分解式の簡略化
2025/5/17

関数 $y = f(x) = -2x^2 + (2a+5)x - a$ の区間 $-4 \le x \le 1$ における最大値と最小値を、$a$ の値によって場合分けして求める問題です。

二次関数最大値最小値場合分け平方完成
2025/5/17

カレンダーの中で十字形に囲まれた5つの数の和が、中央の数の5倍になることを文字を使って説明する問題です。

代数文字式証明カレンダー
2025/5/17

一の位の数が0でない2桁の自然数をAとします。Aの十の位の数と一の位の数を入れ替えてできる自然数をBとします。このとき、A - Bが9の倍数になることを文字を使って説明してください。

整数の性質2桁の自然数文字式倍数代数
2025/5/17

与えられた式を簡略化します。与えられた式は $n + (n+1) + (n+2) + (n+3) + (n+4)$ です。

式の簡略化一次式代数
2025/5/17