数列 $2, 3, 7, 16, 32, 57, 93, \dots$ の一般項を求める問題です。算数数列階差数列一般項級数2025/5/181. 問題の内容数列 2,3,7,16,32,57,93,…2, 3, 7, 16, 32, 57, 93, \dots2,3,7,16,32,57,93,… の一般項を求める問題です。2. 解き方の手順階差数列を考えることで一般項を求めます。与えられた数列を {an}\{a_n\}{an} とします。a1=2,a2=3,a3=7,a4=16,a5=32,a6=57,a7=93,…a_1 = 2, a_2 = 3, a_3 = 7, a_4 = 16, a_5 = 32, a_6 = 57, a_7 = 93, \dotsa1=2,a2=3,a3=7,a4=16,a5=32,a6=57,a7=93,…階差数列 {bn}\{b_n\}{bn} を bn=an+1−anb_n = a_{n+1} - a_nbn=an+1−an と定義します。b1=a2−a1=3−2=1b_1 = a_2 - a_1 = 3 - 2 = 1b1=a2−a1=3−2=1b2=a3−a2=7−3=4b_2 = a_3 - a_2 = 7 - 3 = 4b2=a3−a2=7−3=4b3=a4−a3=16−7=9b_3 = a_4 - a_3 = 16 - 7 = 9b3=a4−a3=16−7=9b4=a5−a4=32−16=16b_4 = a_5 - a_4 = 32 - 16 = 16b4=a5−a4=32−16=16b5=a6−a5=57−32=25b_5 = a_6 - a_5 = 57 - 32 = 25b5=a6−a5=57−32=25b6=a7−a6=93−57=36b_6 = a_7 - a_6 = 93 - 57 = 36b6=a7−a6=93−57=36したがって、bn=n2b_n = n^2bn=n2 と推測できます。次に、数列 {bn}\{b_n\}{bn} の階差数列 {cn}\{c_n\}{cn} を cn=bn+1−bnc_n = b_{n+1} - b_ncn=bn+1−bn と定義します。cn=(n+1)2−n2=n2+2n+1−n2=2n+1c_n = (n+1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1cn=(n+1)2−n2=n2+2n+1−n2=2n+1数列 {cn}\{c_n\}{cn} の階差数列 {dn}\{d_n\}{dn} を dn=cn+1−cnd_n = c_{n+1} - c_ndn=cn+1−cn と定義します。dn=2(n+1)+1−(2n+1)=2n+2+1−2n−1=2d_n = 2(n+1) + 1 - (2n + 1) = 2n + 2 + 1 - 2n - 1 = 2dn=2(n+1)+1−(2n+1)=2n+2+1−2n−1=2数列{an}\{a_n\}{an}の一般項を階差数列を用いて表します。an=a1+∑k=1n−1bka_n = a_1 + \sum_{k=1}^{n-1} b_kan=a1+∑k=1n−1bkan=a1+∑k=1n−1k2a_n = a_1 + \sum_{k=1}^{n-1} k^2an=a1+∑k=1n−1k2an=2+∑k=1n−1k2a_n = 2 + \sum_{k=1}^{n-1} k^2an=2+∑k=1n−1k2∑k=1n−1k2=(n−1)n(2n−1)6=(n−1)n(2n−1)6=2n3−3n2+n6\sum_{k=1}^{n-1} k^2 = \frac{(n-1)n(2n-1)}{6} = \frac{(n-1)n(2n-1)}{6} = \frac{2n^3 - 3n^2 + n}{6}∑k=1n−1k2=6(n−1)n(2n−1)=6(n−1)n(2n−1)=62n3−3n2+nan=2+2n3−3n2+n6=12+2n3−3n2+n6=2n3−3n2+n+126a_n = 2 + \frac{2n^3 - 3n^2 + n}{6} = \frac{12 + 2n^3 - 3n^2 + n}{6} = \frac{2n^3 - 3n^2 + n + 12}{6}an=2+62n3−3n2+n=612+2n3−3n2+n=62n3−3n2+n+12n=1n=1n=1のとき、a1=2−3+1+126=126=2a_1 = \frac{2 - 3 + 1 + 12}{6} = \frac{12}{6} = 2a1=62−3+1+12=612=2n=2n=2n=2のとき、a2=16−12+2+126=186=3a_2 = \frac{16 - 12 + 2 + 12}{6} = \frac{18}{6} = 3a2=616−12+2+12=618=3n=3n=3n=3のとき、a3=54−27+3+126=426=7a_3 = \frac{54 - 27 + 3 + 12}{6} = \frac{42}{6} = 7a3=654−27+3+12=642=7n=4n=4n=4のとき、a4=128−48+4+126=966=16a_4 = \frac{128 - 48 + 4 + 12}{6} = \frac{96}{6} = 16a4=6128−48+4+12=696=16n=5n=5n=5のとき、a5=250−75+5+126=1926=32a_5 = \frac{250 - 75 + 5 + 12}{6} = \frac{192}{6} = 32a5=6250−75+5+12=6192=32n=6n=6n=6のとき、a6=432−108+6+126=3426=57a_6 = \frac{432 - 108 + 6 + 12}{6} = \frac{342}{6} = 57a6=6432−108+6+12=6342=57n=7n=7n=7のとき、a7=686−147+7+126=5586=93a_7 = \frac{686 - 147 + 7 + 12}{6} = \frac{558}{6} = 93a7=6686−147+7+12=6558=93よって、一般項はan=2n3−3n2+n+126a_n = \frac{2n^3 - 3n^2 + n + 12}{6}an=62n3−3n2+n+123. 最終的な答えan=2n3−3n2+n+126a_n = \frac{2n^3 - 3n^2 + n + 12}{6}an=62n3−3n2+n+12