与えられた2次式 $5x^2 + 7x - 6$ を因数分解し、$(x + \text{キ})( \text{ク}x - \text{ケ})$ の形にせよ。ここで、キ、ク、ケにあてはまる数字を求める問題です。

代数学二次方程式因数分解たすき掛け
2025/5/18

1. 問題の内容

与えられた2次式 5x2+7x65x^2 + 7x - 6 を因数分解し、(x+)(x)(x + \text{キ})( \text{ク}x - \text{ケ}) の形にせよ。ここで、キ、ク、ケにあてはまる数字を求める問題です。

2. 解き方の手順

まず、与えられた2次式を因数分解します。
5x2+7x65x^2 + 7x - 6 を因数分解するため、たすき掛けを利用します。
5x25x^2 の項は 5x×x5x \times x と分解できます。
6-6 の項は、例えば 2×32 \times -3 と分解できます。
実際にたすき掛けを行い、 xx の係数が 77 になる組み合わせを探します。
5x×3=15x5x \times -3 = -15x
x×2=2xx \times 2 = 2x
15x+2x=13x-15x + 2x = -13x
これは xx の係数が 77 にならないので、別の組み合わせを試します。
5x2+7x6=(5x3)(x+2)5x^2 + 7x - 6 = (5x - 3)(x + 2)
または
5x2+7x6=(x+2)(5x3)5x^2 + 7x - 6 = (x + 2)(5x - 3)
これを問題の式 (x+)(x)(x + \text{キ})( \text{ク}x - \text{ケ}) と比較すると、
=2= 2
=5= 5
=3= 3

3. 最終的な答え

キ = 2
ク = 5
ケ = 3

「代数学」の関連問題

2次関数のグラフが、3点$(1, 0), (2, 1), (-1, 10)$を通る。このとき、この2次関数を求めよ。

二次関数グラフ方程式連立方程式
2025/5/18

数列 $\{a_n\}$ が $a_1 = 5$ および漸化式 $na_{n+1} = (n+1)a_n + 2$ で定義されるとき、一般項 $a_n$ を求める。

数列漸化式一般項
2025/5/18

(1) 次の和を求めよ。 (ア) $1 + 2 + 2^2 + \dots + 2^{n-1}$ (イ) $5^2 + 6^2 + 7^2 + \dots + 20^2$ (2) $\sum_{k=1...

数列等比数列シグマ和の公式
2025/5/18

以下の2つの条件を満たす2次関数を求める問題です。 1) 頂点が $(2, 3)$ で、点 $(5, -6)$ を通る。 2) 軸が直線 $x = -2$ で、2点 $(2, -1)$, $(-8, ...

二次関数頂点連立方程式展開
2025/5/18

(1) 内積空間$V$において、零ベクトルでないベクトル$u_1, u_2, ..., u_r$が互いに直交するならば、1次独立であることを示す。 (2) (1)の逆が成り立つかどうかを判断し、成り立...

線形代数内積空間直交1次独立ベクトルノルム
2025/5/18

(1) 第2項が12, 第5項が768である等比数列 $\{a_n\}$ の一般項を求める。 (2) 初項が3, 公比が2の等比数列の初項から第10項までの和を求める。

等比数列数列一般項和の公式
2025/5/18

与えられた複素数 $z$ に関する方程式を満たす点 $z$ 全体がどのような図形になるかを求める問題です。方程式は全部で4つあります。 (1) $|z-3| = 1$ (2) $|z+2i| = 2$...

複素数絶対値直線複素平面
2025/5/18

次の点を表す複素数を求める問題です。 (1) 2点 $A(-2+5i)$, $B(6-9i)$ を結ぶ線分 $AB$ の中点 (2) 2点 $A(1-i)$, $B(4+3i)$ を結ぶ線分 $AB$...

複素数複素平面線分中点内分点外分点重心
2025/5/18

$\frac{2}{3^n}n$ と $(\frac{2}{3})^n$ は何か違うか、という問題です。

指数分数比較不等式
2025/5/18

与えられた式 $2x^2 - 2xy - 4y^2 + x + 4y - 1$ を因数分解しなさい。

因数分解多項式
2025/5/18