与えられた数式の値を計算します。 数式は以下です。 $\frac{1}{1-\sqrt{2}} - \frac{1}{\sqrt{2}-\sqrt{3}} + \frac{1}{\sqrt{3}-2}$

代数学式の計算有理化平方根
2025/5/18

1. 問題の内容

与えられた数式の値を計算します。
数式は以下です。
112123+132\frac{1}{1-\sqrt{2}} - \frac{1}{\sqrt{2}-\sqrt{3}} + \frac{1}{\sqrt{3}-2}

2. 解き方の手順

まず、各項の分母を有理化します。
第1項:
112=112×1+21+2=1+212=1+21=12\frac{1}{1-\sqrt{2}} = \frac{1}{1-\sqrt{2}} \times \frac{1+\sqrt{2}}{1+\sqrt{2}} = \frac{1+\sqrt{2}}{1-2} = \frac{1+\sqrt{2}}{-1} = -1-\sqrt{2}
第2項:
123=123×2+32+3=2+323=2+31=23\frac{1}{\sqrt{2}-\sqrt{3}} = \frac{1}{\sqrt{2}-\sqrt{3}} \times \frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}} = \frac{\sqrt{2}+\sqrt{3}}{2-3} = \frac{\sqrt{2}+\sqrt{3}}{-1} = -\sqrt{2}-\sqrt{3}
第3項:
132=132×3+23+2=3+234=3+21=32\frac{1}{\sqrt{3}-2} = \frac{1}{\sqrt{3}-2} \times \frac{\sqrt{3}+2}{\sqrt{3}+2} = \frac{\sqrt{3}+2}{3-4} = \frac{\sqrt{3}+2}{-1} = -\sqrt{3}-2
次に、これらの結果を元の式に代入します。
(12)(23)+(32)(-1-\sqrt{2}) - (-\sqrt{2}-\sqrt{3}) + (-\sqrt{3}-2)
=12+2+332= -1-\sqrt{2} + \sqrt{2} + \sqrt{3} - \sqrt{3} - 2
=12=3= -1 - 2 = -3

3. 最終的な答え

-3

「代数学」の関連問題

自然数 $n$ に対して、等式 $1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$ が成り立つことを数学的帰納法を用いて証明する。

数学的帰納法数列等式累乗和
2025/5/18

(1) 数列 $\{a_n\}$ が、$a_1 = 3$, $a_{n+1} = 2a_n + 1$ ($n = 1, 2, 3, \dots$) で定められているとき、一般項 $a_n$ を求めよ。...

数列漸化式等比数列階差数列数列の和
2025/5/18

数列 $\{a_n\}$ が $1, 11, 111, 1111, \dots$ で与えられています。この数列の初項から第 $n$ 項までの和 $S_n$ を求めるために、以下の2通りの方法が示されて...

数列等比数列級数
2025/5/18

はい、承知しました。3つの問題についてそれぞれ解答します。

数列級数Σ部分分数分解階差数列
2025/5/18

(1) 等差数列の第3項が-1, 第8項が14であるとき、初項と公差を求め、さらに第10項を求めよ。 (2) 等比数列の第2項が-8, 第5項が1であるとき、初項と公比を求め、さらに初項から第10項ま...

数列等差数列等比数列初項公差公比等差中項等比中項
2025/5/18

与えられた3つの等式が正しいかどうかを判断し、正しい場合は〇、正しくない場合は×を記入します。 (1) 数列 $\{a_k\}$, $\{b_k\}$ に対して、$\sum_{k=1}^{n} a_k...

数列級数等式シグマ
2025/5/18

与えられた2次式 $6x^2 + x - 2$ を因数分解する問題です。

因数分解二次式多項式
2025/5/18

与えられた対数の式を計算します。 $log_2\sqrt[3]{16} - 2log_2\sqrt{8}$

対数指数計算
2025/5/18

1辺が10cmの正方形がある。この正方形の1辺の長さを $a$ cm長くした正方形は、もとの正方形と比べてどれだけ面積が増えるかを、$a$ を用いて表す問題。ただし、$a > 0$ とする。

面積二次式展開正方形
2025/5/18

与えられた2次式 $x^2 + 2x - 15$ を因数分解する問題です。

因数分解二次式
2025/5/18