与えられた式 $(x+y+1)(x+y-1)(x-y+1)(x-y-1)$ を展開し、簡単にすることを求めます。代数学展開因数分解多項式式の計算2025/5/181. 問題の内容与えられた式 (x+y+1)(x+y−1)(x−y+1)(x−y−1)(x+y+1)(x+y-1)(x-y+1)(x-y-1)(x+y+1)(x+y−1)(x−y+1)(x−y−1) を展開し、簡単にすることを求めます。2. 解き方の手順まず、(x+y+1)(x+y−1)(x+y+1)(x+y-1)(x+y+1)(x+y−1) と (x−y+1)(x−y−1)(x-y+1)(x-y-1)(x−y+1)(x−y−1) をそれぞれ計算します。(x+y+1)(x+y−1)(x+y+1)(x+y-1)(x+y+1)(x+y−1) は、和と差の積の公式 (a+b)(a−b)=a2−b2(a+b)(a-b) = a^2 - b^2(a+b)(a−b)=a2−b2 を用いて、a=x+ya = x+ya=x+y、 b=1b = 1b=1 とすると、(x+y+1)(x+y−1)=(x+y)2−12=(x+y)2−1=x2+2xy+y2−1(x+y+1)(x+y-1) = (x+y)^2 - 1^2 = (x+y)^2 - 1 = x^2 + 2xy + y^2 - 1(x+y+1)(x+y−1)=(x+y)2−12=(x+y)2−1=x2+2xy+y2−1同様に、(x−y+1)(x−y−1)(x-y+1)(x-y-1)(x−y+1)(x−y−1) は、a=x−ya = x-ya=x−y、 b=1b = 1b=1 とすると、(x−y+1)(x−y−1)=(x−y)2−12=(x−y)2−1=x2−2xy+y2−1(x-y+1)(x-y-1) = (x-y)^2 - 1^2 = (x-y)^2 - 1 = x^2 - 2xy + y^2 - 1(x−y+1)(x−y−1)=(x−y)2−12=(x−y)2−1=x2−2xy+y2−1したがって、与えられた式は、(x2+2xy+y2−1)(x2−2xy+y2−1)(x^2 + 2xy + y^2 - 1)(x^2 - 2xy + y^2 - 1)(x2+2xy+y2−1)(x2−2xy+y2−1)ここで、A=x2+y2−1A = x^2 + y^2 - 1A=x2+y2−1 とおくと、(x2+y2−1+2xy)(x2+y2−1−2xy)=(A+2xy)(A−2xy)=A2−(2xy)2(x^2 + y^2 - 1 + 2xy)(x^2 + y^2 - 1 - 2xy) = (A + 2xy)(A - 2xy) = A^2 - (2xy)^2(x2+y2−1+2xy)(x2+y2−1−2xy)=(A+2xy)(A−2xy)=A2−(2xy)2=(x2+y2−1)2−4x2y2= (x^2 + y^2 - 1)^2 - 4x^2y^2=(x2+y2−1)2−4x2y2=(x2)2+(y2)2+(−1)2+2(x2)(y2)+2(x2)(−1)+2(y2)(−1)−4x2y2= (x^2)^2 + (y^2)^2 + (-1)^2 + 2(x^2)(y^2) + 2(x^2)(-1) + 2(y^2)(-1) - 4x^2y^2=(x2)2+(y2)2+(−1)2+2(x2)(y2)+2(x2)(−1)+2(y2)(−1)−4x2y2=x4+y4+1+2x2y2−2x2−2y2−4x2y2= x^4 + y^4 + 1 + 2x^2y^2 - 2x^2 - 2y^2 - 4x^2y^2=x4+y4+1+2x2y2−2x2−2y2−4x2y2=x4+y4−2x2y2−2x2−2y2+1= x^4 + y^4 - 2x^2y^2 - 2x^2 - 2y^2 + 1=x4+y4−2x2y2−2x2−2y2+1=x4+y4−2x2y2−2x2−2y2+1= x^4 + y^4 - 2x^2y^2 - 2x^2 - 2y^2 + 1=x4+y4−2x2y2−2x2−2y2+13. 最終的な答えx4+y4−2x2y2−2x2−2y2+1x^4 + y^4 - 2x^2y^2 - 2x^2 - 2y^2 + 1x4+y4−2x2y2−2x2−2y2+1