問題は、2つの式 $x - 4y$ と $-6x + 2y$ の和を求めることです。

代数学式の計算多項式一次式
2025/5/18

1. 問題の内容

問題は、2つの式 x4yx - 4y6x+2y-6x + 2y の和を求めることです。

2. 解き方の手順

2つの式を足し合わせるには、同じ種類の項(xxの項とyyの項)をそれぞれ足し合わせます。
まず、xx の項を足し合わせます:
x+(6x)=x6x=5xx + (-6x) = x - 6x = -5x
次に、yy の項を足し合わせます:
4y+2y=2y-4y + 2y = -2y
最後に、これらの結果を組み合わせます:
5x2y-5x - 2y

3. 最終的な答え

5x2y-5x - 2y

「代数学」の関連問題

第3項が18、第5項が162である等比数列 $\{a_n\}$ について、以下の問題を解きます。 (1) 一般項を求める。 (2) 第7項を求める。 (3) 各項が正のとき、初項から第5項までの和を求...

数列等比数列一般項公比
2025/5/18

与えられた式 $(x-7)y + 7 - x$ を因数分解します。

因数分解式変形共通因数
2025/5/18

2次関数 $y = 2x^2 + 3x + 1$ を、$x$軸方向に2、$y$軸方向に3だけ平行移動した放物線の方程式を求める。

二次関数平行移動放物線数式展開
2025/5/18

ベクトル $\vec{a} = (-7, 4)$ と $\vec{b} = (2, -3)$ が与えられている。実数 $t$ に対して、$\left| \vec{a} + t\vec{b} \righ...

ベクトル内積絶対値二次関数最小値
2025/5/18

初項が55、公差が-6の等差数列の初項から第 $n$ 項までの和を $S_n$ とするとき、$S_n$ の最大値を求める問題です。

等差数列数列の和最大値平方完成
2025/5/18

$\log_3(x-1) = \log_9(x+5)$ を満たす $x$ の値を求め、 $x = $ [セ] の [セ] に入る適切な整数値を答える問題です。

対数方程式真数条件二次方程式
2025/5/18

与えられた整式 $2x^2 - 2xy - 4y^2 + x + 4y - 1$ を、 (1) $x$について降べきの順に並べよ。 (2) 因数分解せよ。

因数分解多項式降べきの順
2025/5/18

与えられた整式 $2x^2 - 2xy - 4y^2 + x + 4y - 1$ を因数分解せよ。

因数分解整式
2025/5/18

$\log_{1000} x = \frac{1}{3}$ の解 $x$ を求める問題です。

対数指数方程式
2025/5/18

与えられた多項式 $y^2 + z^2 + xy + xz + 2yz$ を因数分解する。

因数分解多項式
2025/5/18