与えられた二次方程式 $(x-5)^2 = 8$ を解く問題です。問題を解く手順に従い、空欄を埋めていく形式になっています。

代数学二次方程式平方根方程式の解法
2025/5/18

1. 問題の内容

与えられた二次方程式 (x5)2=8(x-5)^2 = 8 を解く問題です。問題を解く手順に従い、空欄を埋めていく形式になっています。

2. 解き方の手順

まず、x5x-5XX とおくと、X2=8X^2 = 8 となります。
XX8\sqrt{8} または 8-\sqrt{8} となるので、X=±8=±22X = \pm \sqrt{8} = \pm 2\sqrt{2} となります。
次に、XX をもとに戻して、x5=22x-5 = 2\sqrt{2} または x5=22x-5 = -2\sqrt{2} を解きます。
x5=22x-5 = 2\sqrt{2} のとき、x=5+22x = 5 + 2\sqrt{2}
x5=22x-5 = -2\sqrt{2} のとき、x=522x = 5 - 2\sqrt{2}
したがって、解は x=5±22x = 5 \pm 2\sqrt{2} となります。

3. 最終的な答え

X = ±22\pm 2\sqrt{2}
x - 5 = ±22\pm 2\sqrt{2}
x = 5+225 + 2\sqrt{2}
x = 5225 - 2\sqrt{2}
答: x=5±22x = 5 \pm 2\sqrt{2}

「代数学」の関連問題

与えられた不等式 $2^{x+1} \geq 512$ を解き、$x$ の範囲を求める問題です。

指数不等式指数不等式対数
2025/5/18

次の不等式を解く問題です。 $(0.3)^x > 0.09$

指数不等式不等式
2025/5/18

$x=2$、$y=-\frac{1}{4}$のとき、$(x+y)(x-9y)-(x+3y)(x-3y)$の値を求めよ。

式の計算代入展開多項式
2025/5/18

与えられた式 $(a+b-c-d)(a-b-c+d)$ を展開し、簡単にしてください。

展開式変形多項式
2025/5/18

数列 $\{a_n\}$ の初項から第 $n$ 項までの和を $S_n$ とします。等差数列 $\{b_n\}$ は、第3項が5であり、初項から第10項までの和が100です。さらに、$S_n = b_...

数列等差数列和の公式シグマ
2025/5/18

問題3:長方形の土地の中に、縦横に同じ幅の道路を通して4つの区画を作り、それぞれの区画の面積が63m²になったとき、道路の幅を求める問題です。土地の縦の長さは16m、横の長さは20mです。 問題4:縦...

二次方程式面積組み合わせ
2025/5/18

与えられた4つの式をそれぞれ簡単にせよ。 (1) $(\sqrt{3} - \sqrt{2} + 1)^3 (\sqrt{3} + \sqrt{2} - 1)^3$ (2) $\frac{1}{1 +...

式の計算平方根有理化絶対値
2025/5/18

与えられた式を計算し、簡略化します。問題の式は次の通りです。 $\frac{1}{1 + \frac{4x^2}{(1-x^2)^2}} \times \frac{1+x^2}{(1-x^2)^2}$

式の計算分数式因数分解約分式変形
2025/5/18

以下の4つの式を因数分解してください。 (1) $x^2 z - 2xyz - 3y^2 z - 2x^2 + 4xy + 6y^2$ (2) $2x^2 + 3xy + y^2 + 3x + y -...

因数分解多項式
2025/5/18

$\frac{2}{3} < x < \frac{3}{4}$ のとき、$\sqrt{9x^2 - 12x + 4} + \sqrt{x^2 + 4x + 4} - \sqrt{16x^2 - 24x...

絶対値因数分解不等式式の計算
2025/5/18