問題は以下の2つです。 (1) 6の平方根を求める。 (2) $\sqrt{16}$ と $-\sqrt{\frac{9}{25}}$ の値をそれぞれ求める。

算数平方根ルート数の計算
2025/5/18

1. 問題の内容

問題は以下の2つです。
(1) 6の平方根を求める。
(2) 16\sqrt{16}925-\sqrt{\frac{9}{25}} の値をそれぞれ求める。

2. 解き方の手順

(1) 6の平方根は、2乗すると6になる数です。したがって、±6\pm\sqrt{6} が答えです。
(2) 16\sqrt{16} は、2乗すると16になる正の数です。4の2乗は16なので、16=4\sqrt{16} = 4 です。
925-\sqrt{\frac{9}{25}} は、925\frac{9}{25} の平方根の負の値です。925=(35)2\frac{9}{25} = (\frac{3}{5})^2 なので、925=35\sqrt{\frac{9}{25}} = \frac{3}{5} です。したがって、925=35 -\sqrt{\frac{9}{25}} = -\frac{3}{5} となります。

3. 最終的な答え

(1) ±6\pm\sqrt{6}
(2) 16=4\sqrt{16} = 4, 925=35-\sqrt{\frac{9}{25}} = -\frac{3}{5}

「算数」の関連問題

1から100までの整数について、以下の数の和を求める問題です。 (1) 3の倍数 (2) 5の倍数 (3) 3または5の倍数

等差数列倍数公倍数集合
2025/5/18

次の数列の和を求めます。 (1) $1+2+3+...+9+10$ (2) $2+4+6+...+18+20$ (3) $2+5+8+...+47+50$ (4) $1+2+3+...+99+100$

数列等差数列
2025/5/18

(1) 1から200までの自然数のうち、4で割ると3余る数の和を求める。 (2) 直線 $l: y = -2x + 3$ がある。点 $P_n(a_n, 0)$ を通り、$l$ に垂直な直線と $l$...

等差数列一次関数線形代数数列
2025/5/18

1から1000までの整数について、以下の条件を満たす数がそれぞれ何個あるかを求める問題です。 (1) 3の倍数 (2) 5の倍数 (3) 3の倍数かつ5の倍数 (4) 3の倍数または5の倍数 (5) ...

倍数約数包除原理
2025/5/18

$\frac{2}{3}n$ と $(\frac{2}{3})^4$ の値が何か違うということが書かれています。この問題では、$(\frac{2}{3})^4$ を計算し、$\frac{2}{3}n$...

分数計算方程式
2025/5/18

1から100までの整数の中で、以下の条件を満たす整数の個数をそれぞれ求める問題です。 (1) 4で割り切れる数 (2) 6で割り切れない数 (3) 4と6の少なくとも一方で割り切れる数 (4) 4でも...

整数の性質約数倍数集合
2025/5/18

問題は「4でも6でも割り切れない数」についてです。しかし、問題文だけでは、どの範囲の数について考えているのかが不明です。ここでは、具体的な数の範囲が指定されていないため、**「4でも6でも割り切れない...

約数倍数公倍数最小公倍数包除原理
2025/5/18

AからBへ行くのに4種類のバス路線がある。AからBまで行って帰ってくる場合において、往復で同じ路線を利用してよいとき、往復に利用する路線の選び方は何通りあるか。

場合の数組み合わせ積の法則
2025/5/18

バス停AからBへ行くのに4種類のバス路線があります。AからBまで行って帰ってくる場合、往復に利用する路線の選び方が何通りあるかを求めます。ただし、往復で同じ路線を利用してもよいとします。

場合の数組み合わせ積の法則
2025/5/18

バス停AからBへ行くのに4種類のバス路線がある。AからBまで行って帰ってくる場合、以下の条件を満たす時、往復に利用する路線の選び方は何通りあるか。 (1) 往復で同じ路線を利用してよい。

組み合わせ場合の数数え上げ
2025/5/18