次の式の値を計算する問題です。 $\frac{\sqrt{3}}{\sqrt{2}-1} - \frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}} - \frac{2}{\sqrt{3}-1}$代数学式の計算有理化根号2025/5/191. 問題の内容次の式の値を計算する問題です。32−1−23+2−23−1\frac{\sqrt{3}}{\sqrt{2}-1} - \frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}} - \frac{2}{\sqrt{3}-1}2−13−3+22−3−122. 解き方の手順各項を有理化します。第1項:32−1=3(2+1)(2−1)(2+1)=6+32−1=6+3\frac{\sqrt{3}}{\sqrt{2}-1} = \frac{\sqrt{3}(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{\sqrt{6}+\sqrt{3}}{2-1} = \sqrt{6}+\sqrt{3}2−13=(2−1)(2+1)3(2+1)=2−16+3=6+3第2項:23+2=2(3−2)(3+2)(3−2)=6−23−2=6−2\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}} = \frac{\sqrt{2}(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})} = \frac{\sqrt{6}-2}{3-2} = \sqrt{6}-23+22=(3+2)(3−2)2(3−2)=3−26−2=6−2第3項:23−1=2(3+1)(3−1)(3+1)=2(3+1)3−1=2(3+1)2=3+1\frac{2}{\sqrt{3}-1} = \frac{2(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{2(\sqrt{3}+1)}{3-1} = \frac{2(\sqrt{3}+1)}{2} = \sqrt{3}+13−12=(3−1)(3+1)2(3+1)=3−12(3+1)=22(3+1)=3+1したがって、32−1−23+2−23−1=(6+3)−(6−2)−(3+1)=6+3−6+2−3−1=1\frac{\sqrt{3}}{\sqrt{2}-1} - \frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}} - \frac{2}{\sqrt{3}-1} = (\sqrt{6}+\sqrt{3}) - (\sqrt{6}-2) - (\sqrt{3}+1) = \sqrt{6}+\sqrt{3} - \sqrt{6}+2 - \sqrt{3}-1 = 12−13−3+22−3−12=(6+3)−(6−2)−(3+1)=6+3−6+2−3−1=13. 最終的な答え1